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Abstract. In this paper we investigate the maximon and minimum nsmber of
bases and cirenils and their struchare in a matrold. ‘Fhis problem originates from
the calcuiatinn of the number of minimal reactions and wechanisms in chemical
shoickinometry.

Mathematics Subject Classifications {2000). Primasy 85135, Secondary
#5005

1 Introduction

The very firsh problem in onr investigations was to determine the mamber of
wintmum reactions and mechanisms in chemical stoichinmetry, which lead to
the following linear algebraic {not geometrie) notion IT):

“4 set of vectors § < R is called o simplex if § it is Hnearly
dependent bul all its proper subsets are independent.”

(I8] investigates the refevant systems of linear equations while 9] generates all
the simplexes in a given finite set of vectors in R®. The chemical motivation is
shortly deseribed e.g. in |31 and [9].)

In [3] nnd [2] the anthors raised and partially solved the question “Hont many
simpleres (minimum or mazimum} eon be found in a given set of veclors in R
of fived cordinalily, and what are the evtreme constructions#”

Tor an arbitrary mateoid, the eorresponding notion of a simplex is caled
a chrenit, that is a dependent. set sl of whose proper subsets are independent,.
This paper concentrates on the following, more general problems
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“What is the mintmum and moezimum number of circuils and bases in matroids
of given size and rank?”

‘We completely solve the mnaxiimm ense and partially answer the minimmn case,
where the exact value of the fower bound remains open when neither paratit
eloments aor loops are allowed in the matroid,

The anthiors are grateful to Professor A, Pethd for drawing their attention to
this problem. Despite of ours and others’ intensive search for relevant, Biorature,
only Murty's paper {4} on equicardinal matroids {where all circuits have the same
size) was found.

The matroid terminology used mestly follows Oxiey {5l We denote 2 ma-
iroid A as a pair (S, F}, where § is the ground set of AF, and F s the set of
independent subsets of 5. We usually use m for the size of the matroid, i.0. the
cardinality of 8, and n for its rank n, Le. the cardinality of any basts of M. Wo
assume that € < n < m, as the case wm = n is frivial. Through this note we use
the following convenient notion:

DeEFiITION. A cireutt i called small iF it consists of at most » elements. A
circuit will be called large if it contains at least 3§ elements.

Note, that in this sense a cirewit can be small and large at tiw siune dme,
as well.

2 On the maximum

In this seckion we eount the maximum mumber of ciregibs and bases i matroids
of size of 1 and rank n, exhibiting the structure of the resulting matrobds.

2.1  Maximum number of circuits
Quer results are summarized in the following theorem:

Turonem 2.1 Ifm > n+ 1, then only the uniform mabroid U, . conlains the
mazimam number of circuils, ("”“). If = n 4 1, oll mabroids of size m and

i

of rank n contatn ezectly } cironit.

Proof. To prove Theorem 2.1 we first describe the Construction 1 to build a new
matroid M’ = {3, '} from A = (8, F).

CongTRUCTION 1 Let « be an element of §. Then M’ is obtained by freely
adding a new element « to M\u. (See Oxley’x book, [5], Section 7.2} Note

that
8 e S\{w} U {u'}
and .

Fli={f € F: [ CS\u{fuw}sfe LS G S\fuh | SIS n -1},

H. is straightforward te verify that the size and rank are preserved, asd that ihe
pew element 17 s not a member of any small ciresits i MY More importastly,
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H an element of S\{u} is not contained in a small cireuit of A, then the same
remalng frue in M7, Further the aumber of circuits in A7 is ab least that of A1,

LEMMA 2.2 The number of circuils in M ts sirictly less than (“:!3) whenever
M contains a small circnit and m > n -+ 1.

Proof, Lt K € A be a fixed small cirenit of € elements, £ < n. Using e above
Constraction I repeatedly m — € times, we can replace each u € S\K by a new
element +' as described. The mumber of cirenits was not decreased and in fact
the circuits loft are K itgelf and all other ones imust be of sive n+ 1. The number
is thoerefore at most

&l m- £ " m £
1+§(z’)(n+i»~i) E”(nu)“(nﬂwf)

which is strictly less than {7} ff m >n+ 1. o

For the case m = n + 1, we have a base {u;,%,..., %} and therefore
= {11, %2, .. 2, 03 containg a unigue gireuit by the corollary of the weak
axiom for nrr:mq This concludes the proof of Theorem 2.1. X

2.2 Bases

It firens ok that the above Constraction § does not decreage the number of bases
either, and again only U, , does bave the maxinm munber of bases, samely
{™). Wo can assume that m > 1> 0 and we consider a matroid M = (S, F'} of
size m and rank n.

TuroweM 2.3 Only the uniform matroid U, . conlaing the marimum number
of bases, namely {7},

Proof, We first verify ihat the number of bhases does not decrease during the
Construction 1, where an element « € 5 is replaced by an element o', et
BC Sheabasein M. If u ¢ B, then B remains a base in M, otherwise,
if w & B, then B\{u} U {«'} is now a base in A’. This means that we have
a one-one cotrespondence between the bases of M and some bases of A/, We
now show that any matroid eontaining small cirenits containg strietly less than
(™} bases. Let M = (5, F) be a matroid containing a small circuit. K of size
¢ where ¢ < n. As before, replace all the elenents u of S\K repeatedly by a
corresponding v’ as described in the Constraction 1. In the final matroid the
bases are exactly all the n-element subsets of 5 not containing K. The number
of these subsets iy

SO0

which is clearly strictly less than {7} wsing £ < n < m. 03
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3 On the minimum

In this section we give a lower bound for the number of circuits and bases being
contained in a matroid of size m and of rank n. As opposed to the maximam
case, the answer here for the minkmism case depends on whether we allow loops
or parallel elements; subseciions 3.1 and 3.2 investigate separately these cases
where we also describe the anigue minhnum configurations. As i 2], & ihird
case excluding both loops and paraliel elerments remains open.

3.1 Allowing loops

I this subsection we analyze the minimum snmber of circuits and bases i
matroids, allowing one element dependent sets, called loops. {These loops are
necessarily circuite.) We shall assume that m > n, since the frivial case mo=n
implies that such a matroid world have no cirenit and only one hase,

TuronrM 3.1 For each m and n, there is o unigue mabroid My of size m and
of mank n containing the minimum number of bases, namely 1, when we allow
loops in the matroid.

Proof, Let Alg := (S5, Fy} be the matroid of sive . and rank n where Sy =
{t1, BBy, Vg by AT B == {ay,. .., 1, } 08 basis, and vy, vy Bre
ipops, the only circunits of the matroid, {Note, that B is the the unique Dasis
in the matroid Mg} We show that auy matroid but A, contains more than
one base. (bserve that such a matroid M contains a cirepit, say K, of more
than one element. Consider any element from K\B. This element must he
independent, by the definition of a cireuit, and can therefore be extended it 4o
a gecond base of A, : ]

TOROREM 3.2 Any mairoid M of size m and of vank n contains at least n - m
circuits. A matroid containg exactly m — n circudts if and ondy sf the cirenits of
the matroid are pairusise disjoint:

Proof. Consider a base B of the matroid M. For any u € S\B, the corollary of
the weak axiom for circuits implies that there is a {unigue) cirenit containing
u included in B U {u}. We conclude that Af has at least m: — » many eirenits,
Now suppose that M confains exactly m — n circaits. Fix a base B of M,
and et S\B = {m, vy, ... vp .y} Foreach 1 <4 € m—n, there is a clyenit
R ¢ BU{v}. These cirenits are different for ¢ 3 7 sines K must contain 1y,
but & does not contain it If there were two intersecting civosits AL and K
containing a common element 1, then, by tlie strong axiom for cirenits, e set
K; UK\ {u} would contain a cirouit K, necessarily distinet from all cirenits K,
{1 £ & € m — n), a contradiction. il

Rramank. The matroid My mentioned above also contains exactly w—n pairwise
disinint circnits, Le. loops,
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3.2 Allowing parallel elements, no loops

Ag before, A = (5, F') denctes an arbitrary fixed matroid of size m and of rank
n. Recall that two elements are catied parallel i together they form a circuit. In
this subsection we determine the minimum number of cirenits and bases in the
rase where A/ may not contain loops, but where parallel elements are allowed.

We describe a second constenction to modify the matrold in order to reduce
the mumber of bases and cirenits. Using this Constraction 2 we will describe
the unique struciures of matroids baving the minimum number of circuits and
hases.

ConsTaucTiON 2 Let 1y € S be any fixed element such that, when deleting it
from &, the rank does not decrease (e, #{M) = »(M\{1;}). For example, any
element. which is a member of a cirenit has this property. Fix further a second
arhbitrary element ug € 5 and A new element «' € §. We now define the matraid
A= {8 F by 8 = S\ {1} U {1'], and

Fl={feF:f C N\ mBU{fU{v'}: fU{u} € F F € S\, ua}}).

1
In practice, this Construction 2 will be used when u; and up are members of
a commnon circuit. The effect is essentially that we delete u; from the matroid
and add a new ' parallel to u,.

LummMa 3.3 M = {8, F'} is again o mabroid of size m and of mank n.

Proof. The size and eank of M’ have not changed since |8 = 18] = i, and
since by Construction 2, u; was chosen so Ehat its removal does not decrease
the rank of A1, What must be verified carefully is that M’ is a matroid, although
only the so-called independence angmentation axiom requires a proof; that is
we must show that if f; and fo are members of F' with {fi] < [fa], then there
is an element ¢ € fu\ f) such that fi Ue € F'. There are fonr cases, depending
whether «' € f;.

The only interesting case is when v’ ¢ f) and o' € fo. This means that f, € F,
w ¢ fand H f = fo\ {'} then flufu) € F, 5 € 8\ {u;, 0} But
1t < 12{ug}| and there is therefore an e € fU{up3\ fy such that fiute} € F.
¥ @ = ng, then f U {u'} is as desired; if otherwise e # uy, then f; U {e} is good
enengi, : ]

We are now ready 1o investigate the effect of this Construction 2 on the
anmber of cirenits and of bases.

3.2.1  Circuits

in order to find the structure of the extreme minimum matroid, we investigate
the effect of the above Construction 2 with s careful choice of the element ;.

LaMMA 3.4 Suppose that u;,us € 5 are contained in 6 same large cirendt, and
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deleting wy from M and adding o new elerment parellel bo wy mio A s in
Construction £ the number of circuits does not increase.

Proof. Denote by ky» the number of cirenits containing both wy and g, and
as ysual let « be the new element we just added to M. Notice thab exactly
that cirenits what contain u; were deleted during the Constraction 2, Lo, the
numnber of the cirenits is &) 4 kip. We consbriucted new cireuits, namely the
two-clement clreuit {ng, v/} and the drenits now containing « mstead of 1
in A {but not u), we have &y many of them. Thus the mmmber of rircuits is
changed by &2 4+ 1 ~ &y ~ kyp, which is not positive sice by 2 ke and Ry = 1.
Moreover, the number of cirenits remains unchanged Y &y == by and by = £ 3

Using Construction 2 repeatedly we eventuatly reach a mateoid nof contan-
ing any large circuits, only circuits consisting of two parallel elements. Therefore
a matroid having the minimum number of circults must be among this kind.
The following theoremn says that all matreids having the mintmurs muanber of
ciredits are among this Kind.

THEOREM 3.5 Suppose that there are no large eirenits and no loops in the ma-
troid M, and let {a;,00,. .., 0.} be auy fived base. If 9, denoles the naanber
of elements in M parallel to a; fincluding a; iself) for € = 1,2, .., n, then M
containg the minimum number of circwibs iff W0 — 451 <1 for i £ 4.

Proof. 1t is not difficult to verify that the assumptions on M together with He
weak axiom for circuits imply that every element of § is parallel to one and
0

exactly one of the a;'s, and therefore 3 o, = .
i=1
Suppose on the contrary thab & > 9, 4+ 1 for some 7, < n. Delete ¢; and add

an element parallel to ap, as in Conatrnction 2. Since there are no large cirouits
in our matroid, the namwher of eirenits in M is

()62 6)

which becomes in M’ to be
793' - 1Y Pt i 2,
() ()2 G)
i#3f
These expressions clearly show that the number of circuits did strictly decrease.
Defining a relation on § by & ~ ¢ if they are parallel to the same a; is an
equivalence relation, we obtaln that a wmatroid as above contains the minkmum

number of circuits exactly in the ease when the equivalence classes of paralled
vectors have almeost all the same size, Le. differing by at most one. i

CorOLLARY 3.8 The minimum number of circuils i o matroid of size m oand
of rank o, where m=an +b, (B < b < n}, s

:;-(“;1)4»{1@.—1;)-(3)
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and in particular, f m is a multiple of n,

Iy
?;(3) {}

Now we turn to the exact strncture of the matroids containing the mini-
i namber of circuits, We will see that for small matroids there are more
possibilities while the stracture of large matroids are unique.

TinoreEM 3.7 a) For m < 2n, a maelroid of size m and rank n contains the
mintmum nwnher of circuits iff all its circuits are digjoint.
b) For m > 2n, o matroid contains the minimum number of cireuits ff it
contuing only S-elesment cirenits fi.e. parallel elements), and the sizes of the
equivalence classes of paraliel elements differ by at most 1.

NoTE, There are many matroids satisfying a} while the matroids described in
b) are, i fact, isomorphie. |

The proof of the above theorem is based upon the following lemmas.

t
Lamma 3.8 Jf M contains two large cireuils K and L, then IKNEj € 1.

Proof. If I 1 L contains bwe distinct elements ), # g, then the proof of
Earann 3.4 using k12 > 2 shows that M does not contain the minimam number
of circuits. N

LuMMA 3.3 Let K be a lorge circuit and lef w € K be arbitrory. Then either v
is parallel to some element of K, or else u is not contained in any large cireuifs
intersecting K.

Proof, Suppose that L is a large cireuit contalning « and intersecting K. Using
Lemma 3.8, we must have exactly one element in K 1 L, say ». Then, by the
strong axiom of cironitg, there is a crevit H € K U L\{v} containing u. H
H is large, then ab jeast one of the ftwo sets H N L and H 1 K has ab least
two elemnents, eontradicting the previous lemma. ¥ H is small, then « must be
parallel to an element of /. This completes the proof. &

Lumma 3.10 No element of a large circuit can be paradlel to any element of the
mutroid.

Proof. Consider a large cirenit £ = {uy,us,...,up} (L&, p > 3). Suppose to the
contrary that an element of K, say 4, is paralie]l to some other element 1) #
1. Wo claiin that K7 == {uh,uy, ..., u,} I8 again a large chrenit, contradicting
Lemma 3.8, If K’ € F, then we could extend it to a base B, bat now B U {1}
woukd contain the distinck cirenits K and {u;, u} }, contradicting the weak axiom
for vircuits. However, every proper subset of K' does belong o Fy indeed
otherwise such a subset must contain a circuit £, which cannot he large by
Lemma 3.8 again. But L cannot be a two-element cireuit since v} is parallel
bey Ty - {}
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v

The above lemmas imply that each large circuit must be digjoint. from every
{iarge or snall) cireuit in A, Now it remains to consider small cirenits,

LEMMA 3.11 If M contains s large circuit, then there are no three peirwise
parallel elements.

Proof. Let K be a large cirenit and suppose that three pairwise paraliel elements
exist in M. By Lemma 3.10, we may assume that none of these three elements
belong to K. Lot 4y be one of these three elements and 1ot uz be any element of
K. Use again Constraction 2 to delete u, and add a new element w}, paralisl to
tig; this is possible as M is assumed o confain no loops and therefore u, satisfios
the hypothesis for Consteuction 2. Using a calentation similar to Theorsin 3.5
and the same notation, we have kz = | since K is the only cirenit containing
thz, Kz > 2 sinee we have atb least two elements parailel to u,, and finally ki = 0
sinee 1y is not contained in any large circnit intersecting K by Lemma 3.9 and
is not paraliel to any element of K by Lemma 3.10. Therefore, during the
Constraction 2, we deleted &, circuits; we added the cirenit {wa,u)} of conrse
as well as the cireait K\{uz} U {uh}. Thus the number of circuits has changed
by 14 1 — Ky <0, s0 this number certainly did not increase. But now we can
usa the procedure described in Lemma 3.19 to decrease the mumber of circuits,
This contradiction shows that A was nob minimum. £

Proof of Theorerm 3.7, The above results show that all circuits in M must be
disioint in the presence of a large cireuit. In this case fix any base B of A,
For each element « of S\ B, B {u} must contain a circudt, which in tum
must contain at least one element of B, Since all circuits are assuined o he
pairwise digjoint, 5\ B can contain at most n elemenis. Therefore for m >
2n, a matroid with the minkmium sumber of cirenits cannot contain any large
cirenit. Ta the lack of large circult, using Theorem 3.5, the equivalenee classes
of paratiel elements must have almost the same size. This mplies the statement
of Theorem 3.7. N

Remank. The last part of the above proof describes uniquely the structures of
matroids cortaining the minkmn menber of circiits when m 2 2n.

3.2.2 Bases

The structure of mairoids containing the minimum pumber of bases is always
unique, as described in the following Theorem.

Turonem 3.12 A matmid M of size m and rank n contatns the mininmm
- number of bases iff it has 4 buse {ay,a9,...,a,} such that all other elements in
M are parallel to a;.

As in the previons subsoection, we use Constrnetion 2 to achlove blie inknimam
number of bases. The following result describes the effect of this construction
on the number of bases.
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Luvmma 3,13 Let K be o lorge cirouit in M and let uy ug € K. Denole by
£, the number of bases condaining wy but not uy, and similarly for €. Then
deleting wy and adding o new clement parellel 1o o (08 in Construction 2}, the
namber of bases strictly decreases whenever £, > £y,

Proof. Denote by £, the nnnber of hases containing both ) and uy. By deleting
1, we joose exactly the bases containing =y, that is £) + £, many of them. By
mdding & now elemant. to A paraliel to 1, we gain £; many new bases. Clearly
the set {u;,u2} is independent since K iz assumed to be a large cireuit, so it
can be extended to a base, which implies £ > 1. This, fogether with £; > 4
means that the number of bases strictly decresses. {1

Using the above result, we can remove each large circuit of the matroid while
decreasing the number of bases. In other words, the matroids containing the
stnbmum. sumber of bases do not contain any large circuit.

Proof of Theorem 3.12. Suppose that M does not contain any large cireuit, and
let B == {ay,aq,...,4,} be any fixed base of M. By adding any other clement,
# to this set, we obiain the collection BU {u} which must contain a circuit, and
therefore uw must be paraticl to one of thebase cloments ay, since A does not
contain large circuits.
Denote & the mmber of clements from B paraliel to «; (including a; itseif);
elearly 30, ki = m. Now the rumber of bases {picking an element from each
equivalence class) is

T

HE

izl

Bui in the case ke > &; 2 2, we can delete an element parallel 4o o; and add
a new element. to M parallel to a¢; the musber of hases changes to

I ke i — 1) the+ 1)
it
which is strictly less. This implies that all but one £; is 1. !

Conotianry 3.14 The minimun number of bases is m--n+1, and the minimum
configuration is unsque.

PaoneiM. Characterize the matroids with the minimum nember of ciresits
and bases, when neither parailel elements or loops are allowed,
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