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On the Periodicity of the Sequence
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We give a complete characterization of the behaviour of the sequence cited in the title with
negative coefficients, i.e. we scttle Conjecture 2.3.2 and Problem 2.3.1, and give a partial
answer for Problem 2.3.2 of Ladas (J. Difference Equ. and Appl. 2 (1996) 339-341).

We also give a similar argument for an already known result for the case when all
the coefficients have the same fixed positive value.
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1 THE PROBLEM

In [1] the following sequence was highlighted for detailed investigation:
For any fixed real numbers Ag, 41, .. ., Ax and a@g, a1, - . ., A (k is any
fixed natural number) such that 4, +#0, define

{AO Ay Ag
Xpyi = MAXq —

s LI )
Xn Xn—1 Xn—k

bz 0

and

Xp=dp, X1=0a1, ..., Xk =0k (1a)
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It is useful to rewrite the recursion (1) as

. 1
o () A (i) (20 @)

Some properties of this sequence are listed and conjectured in [1].
The case when all the coefficients 4; are negative is totally open.
The main conjecture is the following. For any coefficients 4;€ R and
for amy initial values ;e R (0<i<k) and k€N this sequence is
eventually periodic if and only if it is bounded, and moreover it is
always bounded for positive numbers A;€R and a;€ R (0<i<k). The
case k=1 is handled in [2].

In the present note we give a complete characterization of the
behaviour of the sequences satisfying (1) and (1a) in the case when
all the coefficients 4; (0 <i< k) are negative (see Theorem A). This
settles Conjecture 2.3.2 and Problem 2.3.1 of [1], and gives a partial
answer for Problem 2.3.2.

In Theorem A we also give a simple argument for an already
stated result for the case when all the coefficients have the same
fixed positive value.

2 THE NEGATIVE COEFFICIENTS CASE

In this section we completely describe the behaviour of the sequence
when all the coefficients are negative: 4;<0, 4, #0, but ;€ R are
arbitrary real numbers for i <k.

THEOREM A For any k>0 and A;<0, A #0, a;€R (i<k) the
Jollowing statements are equivalent:

(1) the sequence (x,) is periodic;

(1) the sequence (x,) is periodic with period k+2;
(1) A;=Ay_,; for 0<i<k;
(1v) the sequence (x,) is bounded.

Proof  Observe first that A4,/x,_; and hence x, ., are positive if and
only if x,_; is negative for some i <k. This implies that enlarging »
step by step we leave behind all the negative elements of the
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sequence. That is, we reach to an ngy such that
Xt >0 for 0<i<k. (+1)
Let
20 = Xng+1-

Clearly z, is negative, and by (x1), the previous k + | elements of the
sequence are positive. This by (x1) implies that the next k+1
elements of the sequence are

A
Xngt2ti = ;é for0<i<k (x2)

and all of them are positive.

Now one can easily see that

A; .
Z1 = Xpy+k+3 = 20 -max{-’—: 0<i< k}
Aje—i

A repeated argument shows that for every natural number 7€ N
Zt = Xpgb 140 (k42) = 20 Kz,.

where

A
K= Li<k
e A 4]

This clearly shows (iii) < (iv).

Checking now the terms between z, and z,.1 we get
(i) = (1) + ().

Since (i) = (iv) is obvious, Theorem A is proved.

Observe also that 4,0 must hold for i <k if there is no positive
term among these coefficients.

The argument given above shows that for n>k+2 the solution
comsists of positive semicycles of length k+ 1, followed by negative
semicycles of length 1, efc., or the other way around (i.e. replace
positive by negative), hence there exists an Ne{l,2,.. . k+2} such
that xn <0.
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The above result confirms Conjecture 2.3.2 and answers Problem
2.3.1 of [1], and moreover gives a partial answer for Problem 2.3.2
of [1].

3 THE SAME POSITIVE COEFFICIENTS CASE

Suppose now that all the coefficients 4;€R have the same fixed
positive value 4;=A. We now prove that the sequence is periodic
also in this case, using an argument similar to the previous proof.

THEOREM B In the case A;=A>0 (i<k) where A is any fixed real
number, the sequence (x,) is periodic with period k + 2.

Proof Let o =+/4. Observe first that Ayx,_;>a and x,.;>a
hold exactly in the case if x,_; <« for some i< k. This implies that
step by step enlarging n we reach an s, such that

Xp—i > fori<k. (x3)
The above inequality clearly implies
Xng1 < &

and so the next k + 1 elements of the sequence are

fori<k. (x4)

Xng+2+i =
"y

In other words, all they have the same value which is greater than
a. Then one can see that

1
Xng +2

Xng+kt3 = = Xny+1

and also that the sequence is periodic with period k + 2.

So Theorem B is proved.
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