Journal of Difference Equations and Applications, 1999, Vol. 5, pp. 25–29 Reprints available directly from the publisher Photocopying permitted by license only © 1999 OPA (Overseas Publishers Association) N.V.

Published by license under
the Gordon and Breach Science
Publishers imprint.

Printed in India.

On the Periodicity of the Sequence

$$x_{n+1} = \max\left\{\frac{A_0}{x_n}, \frac{A_1}{x_{n-1}}, \dots, \frac{A_k}{x_{n-k}}\right\}$$

ISTVÁN SZALKAI*

Department of Mathematics, University of Veszprém, H-8200, Veszprém, Hungary

(Received 30 September 1996; In final form 28 October 1997)

We give a complete characterization of the behaviour of the sequence cited in the title with negative coefficients, i.e. we settle Conjecture 2.3.2 and Problem 2.3.1, and give a partial answer for Problem 2.3.2 of Ladas (J. Difference Equ. and Appl. 2 (1996) 339-341). We also give a similar argument for an already known result for the case when all the coefficients have the same fixed positive value.

Keywords: Difference equation; Periodicity; Boundedness

AMS Subject Classification: 39A10

1 THE PROBLEM

In [1] the following sequence was highlighted for detailed investigation: For any fixed real numbers A_0, A_1, \ldots, A_k and a_0, a_1, \ldots, a_k (k is any fixed natural number) such that $A_k \neq 0$, define

$$x_{n+1} = \max\left\{\frac{A_0}{x_n}, \frac{A_1}{x_{n-1}}, \dots, \frac{A_k}{x_{n-k}}\right\} \quad (n \ge k)$$
 (1)

and

$$x_0 = a_0, \quad x_1 = a_1, \quad \dots, \quad x_k = a_k.$$
 (1a)

^{*}Tel./Fax: (88) 423-239. E-mail: szalkai@almos.vein.hu.

It is useful to rewrite the recursion (1) as

$$x_{n+1} = \min \frac{1}{\{x_n/A_0, ((x_{n-1})/A_1), \dots, ((x_{n-k})/A_k)\}} \quad (n \ge k).$$
 (2)

Some properties of this sequence are listed and conjectured in [1]. The case when all the coefficients A_i are negative is totally open. The main conjecture is the following. For any coefficients $A_i \in \mathbf{R}$ and for any initial values $a_i \in \mathbf{R}$ $(0 \le i \le k)$ and $k \in \mathbf{N}$ this sequence is eventually periodic if and only if it is bounded, and moreover it is always bounded for positive numbers $A_i \in \mathbf{R}$ and $a_i \in \mathbf{R}$ $(0 \le i \le k)$. The case k = 1 is handled in [2].

In the present note we give a *complete* characterization of the behaviour of the sequences satisfying (1) and (1a) in the case when all the coefficients A_i ($0 \le i \le k$) are *negative* (see Theorem A). This settles Conjecture 2.3.2 and Problem 2.3.1 of [1], and gives a partial answer for Problem 2.3.2.

In Theorem A we also give a simple argument for an already stated result for the case when all the coefficients have the same fixed positive value.

2 THE NEGATIVE COEFFICIENTS CASE

In this section we *completely* describe the behaviour of the sequence when all the coefficients are negative: $A_i < 0$, $A_k \neq 0$, but $a_i \in \mathbf{R}$ are arbitrary real numbers for $i \leq k$.

THEOREM A For any $k \ge 0$ and $A_i < 0$, $A_k \ne 0$, $a_i \in \mathbb{R}$ $(i \le k)$ the following statements are equivalent:

- (i) the sequence (x_n) is periodic;
- (ii) the sequence (x_n) is periodic with period k+2;
- (iii) $A_i = A_{k-i}$ for $0 \le i \le k$;
- (iv) the sequence (x_n) is bounded.

Proof Observe first that A_i/x_{n-i} and hence x_{n+1} are positive if and only if x_{n-i} is negative for some i < k. This implies that enlarging n step by step we leave behind all the negative elements of the

sequence. That is, we reach to an n_0 such that

$$x_{n_0-i} > 0 \quad \text{for } 0 \le i \le k. \tag{*1}$$

Let

$$z_0 = x_{n_0+1}$$
.

Clearly z_0 is negative, and by (*1), the previous k+1 elements of the sequence are positive. This by (*1) implies that the next k+1 elements of the sequence are

$$x_{n_0+2+i} = \frac{A_i}{z_0}$$
 for $0 \le i \le k$ (*2)

and all of them are positive.

Now one can easily see that

$$z_1 = x_{n_0+k+3} = z_0 \cdot \max \left\{ \frac{A_i}{A_{k-i}} : 0 \le i \le k \right\}.$$

A repeated argument shows that for every natural number $t \in N$

$$z_t = x_{n_0+1+t\cdot(k+2)} = z_0 \cdot K^t,$$

where

$$K = \max\left\{\frac{A_i}{A_{k-i}} : i \le k\right\}$$

This clearly shows (iii) \Leftrightarrow (iv).

Checking now the terms between z_t and z_{t+1} we get $(iii) \Rightarrow (i) + (ii)$.

Since (i) \Rightarrow (iv) is obvious, Theorem A is proved.

Observe also that $A_i \neq 0$ must hold for $i \leq k$ if there is no positive term among these coefficients.

The argument given above shows that for $n \ge k+2$ the solution consists of positive semicycles of length k+1, followed by negative semicycles of length 1, etc., or the other way around (i.e. replace positive by negative), hence there exists an $N \in \{1, 2, ..., k+2\}$ such that $x_N < 0$.

The above result confirms Conjecture 2.3.2 and answers Problem 2.3.1 of [1], and moreover gives a partial answer for Problem 2.3.2 of [1].

3 THE SAME POSITIVE COEFFICIENTS CASE

Suppose now that all the coefficients $A_i \in \mathbb{R}$ have the same fixed positive value $A_i = A$. We now prove that the sequence is periodic also in this case, using an argument similar to the previous proof.

THEOREM B In the case $A_i = A > 0$ $(i \le k)$ where A is any fixed real number, the sequence (x_n) is periodic with period k + 2.

Proof Let $\alpha = \sqrt{A}$. Observe first that $A_i/x_{n-i} > \alpha$ and $x_{n+1} > \alpha$ hold exactly in the case if $x_{n-i} < \alpha$ for some i < k. This implies that step by step enlarging n we reach an n_0 such that

$$x_{n_0-i} > \alpha \quad \text{for } i \le k. \tag{*3}$$

The above inequality clearly implies

$$x_{n_0+1} < \alpha$$

and so the next k+1 elements of the sequence are

$$x_{n_0+2+i} = \frac{1}{x_{n_0}+1}$$
 for $i \le k$. (*4)

In other words, all they have the same value which is greater than α . Then one can see that

$$x_{n_0+k+3} = \frac{1}{x_{n_0}+2} = x_{n_0+1}$$

and also that the sequence is periodic with period k+2.

So Theorem B is proved.

Acknowledgements

I would like to thank Prof. Gerry Ladas (University of Rhode Island, Kingston, USA) for drawing to our attention the problem, and moreover for further encouragement and support.

References

- Ladas, G.: On the recursive sequence x_{n+1} = max{A₀/x_n, (A₁/(x_{n-1})),..., (A_k/(x_{n-k}))} J. Difference Equ. and Appl. 2 (1996) 339-341.
 Amleh, A.M., Hoag, J. and Ladas, G.: A difference equation with eventually
- periodic solutions, Computers and Math. with Appl., to appear.