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Abeatract. In this paper we give an inductive definition of higher (finite} gap sim-
plified morasses and prove their existence in L. Our construction continues VELLEMAN's
gap-2 definition [Ve8] towards higher (finite} gaps, after revealing the inner structure of
and the hierarchical connection among these combinatorial set- theoretical structures
of different gaps.

Cur presented variant is different from CH. MoRreaAN’s [Mo] and Jensen's [Jel]
ones and has application in [Sz1].

The present paper contains Sections 1 and 5 of the author's Thesis [S22] dated
1991,

0. Introduction

Professor R. B. JENSEN in 1972 [Jel] first defined structures which
he called “gap-8 morasses of height k” or shortly “(k, 8} morasses” for
every regular £ > wy and for any {finite or infinite) 1 < 8 < k.

In 1984 D. VELLEMAN [Ve2] invented the gap-1 so called “simplified
morasses” which possess much simpler structure and applications than
Jensen’s original ones, and he deduced that “there ezists a simplified gap-1
morass iff there s @ Jensen's gap-1 morass”. He in 1987 in {Ve8) went fur-
ther. He defined the gap-2 simplified morasses and showed the consistency
of their existence by forcing. Jensen in the same year in [Je2] gave a direct
construction of gap-2 simplified morasses from his original gap-2 morasses.

CH. MORGAN in 1989 in his thesis [Mo] gave a definition of his higher
(finite) gap simplified morasses. He constructed these kinds of morasses
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from Jensen’s original higher gap morasses. This is because the idea of his
definition (based on sets of sequences of ordinals) is closer to Jensen's one
than to Velleman's: building of gap-2 morass from gap-1 morass-segments.

The present author in 1987 in [Sz1] and his PhD thesis [Sz2] gave
an alternate, inductive definition of higher (finite} gap simplified morasses
which are more similar to Velleman’s gap-2 definition of {Ve8], and he
constructed them from Morgan’s higher gap morasses. The gap-1 special
case of both variants (Morgan’s and Szalkai’s), give exactly Velleman’s
gap-1 simplified morasses. Furhermore, our definition presented in this
paper gives also in the gap-2 case precisely Velleman’s gap-2 simplified
morasses. Our idea is similar to Velleman’s idea: we build up higher gap
structures from suitable parts of smaller gap ones.

The aim of the present paper is to publish our definition and the
contsruction of our inductive higher gap simplified morasses from Morgan’s
morasses {see Sections 1.b and 3). The present paper is a part of the
author’s Thesis [S22]. .

In {S21], [822] we also discuss several properties and an application
of our higher gap simplified morasses, and a definition of full linearizing
sequences for higher gaps, We think the existence of higher gap simplified
morasses with full linearizing sequences can be proved by forcing, similar
to the one presented in [Ve8]. We do not know any definition of simplified
morasses of infinite height. We intend fo construct Morgan’s morasses
from ours in a forthcoming paper.

Organization of the paper: in Section 1 we give the definitions of
Velleman'’s gap-1 and gap-2 simplified morasses (Section 1.a) and of our
inductive higher gap simplified morasses (Section 1.b}. In Section 2 we .
present Morgan’s definition. Section 3 contains the construction of our
higher gap simplified morasses, from a Morgan’s one.

Thanks, Here we say many thanks to prof. R. JENSEN and to D. VEL-
LEMAN for their discussions and warm hospitality in Oxford in 1987, and
resp. in Amherst in 1991, and last but not least to prof. A, KANAMORI
for his valuable letters and the unknown referee for his suggestions for
improvement.

History

Professor R. B. JENSEN in 1972 [Jel] first defined the (x, §)-morasses
for any 1 € 8 < & and regular & > w;. He extracted these structures from
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the fine structure of L while proving the two-cardinal transfer property.
These structures allow us to construct objects of size x*7 in & steps, in
each step building objects of size < x and, in the meantime, to handle
each subobject of s+ of size < &. (This is why this and similar structures
play a big role in combinatorial set theory.) For the gap-1 case (8 = 1)
definitions see e.g. (CK], [Je0], [Defl, [Del], [St1] or [Ve0]. The higher gap
definitions are unpublished, see [Jel], {Je2] and [St0].

Jensen proved in [Je0] for § = 1 and in {Jel] for any § > 1 that
these morasses do exist in L for all regular k. Jensen’s original proof for
the gap-1 case was simplified by K. DEVLIN in [Def], [Del]. S. Sueran
and L. J. STANLEY proved in 1979 that for all A C w; there is an (wy, 1)
morass in L{A], see [8S0] or [Del]. DEvLIN in [Del] proved that there is
an {w, 1}- morass if w, is not an inaccessible cardinal in L. Stanley forced
gap-1 morasses in [St1]. P, KOMIATH in [Ko] showed that Levy collapsing
an inaccessible cardinal to wy there would not be {wy, 1} morass, supposing
the consistency of the existence of 3 Mahlo cardinal,

Many morass-like combinatorial structures have been developed for
deciding combinatorial problems and their existence was proven in L.
{Coarse morasses by DONDER [Dol], quagmires by BuraEss [Bul], Sil-
vers's W, principle e.g. in [Buf] or [Ka0].) These structures and the mo-
rasses have many applications in combinatorial set theory, we only refer
to [Bul], {Re], [Mi], [CK], [S5t0], [St1] and almost all papers of Kanamori
and of Velleman. In [HK], [$52], [SS3] the authors conjectured that their
results can also be obtained by morasses. Some of these conjectures were
justified by STANLEY, VELLEMAN, MORGAN in {SVM] and independently
by SzALKAT in [Sz0] and in {S22]. See also KomiATH's paper [Ko]. Further,
[Kab}, [Kal], [Ka2] contain partial survey, while {Sz2] contains a detailed
survey of these structures, their existence and their applications,

In the meantime, in the early 80’s Shelah, Stanley, Solovay, Velleman
and others were looking for Martin’s Axiom-like forcing axioms which are
valid in L. This was result of a procedure motivated by a question of
K. KuNEN (see e.g. [Vel]):

“Why are there so many statements which can be shown to be consis-
tent with ZCF by forcing, and which are also true if V = L¥?”7

S. SHELAH and L. STANLEY in [SS0], [S51] and independently D. VELLE-
MAN in [Ve0] obtained Martin’s Axiom like forcing axioms which are, in
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fact equivalent to the existence of gap-1-morasses. {R. Solovay begun sim-
ilar investigations in 1977 which remained unpublished.)

D. VeLLEMAN [Ve2] originally deduced the fact that there exists a
simplified gap-1 morass iff there is a Jensen’s original gap-1 morass via his
forcing principle {which answered Kunen's question), later H. D. DoNDER
in [Dol] gave a direct proof for this fact, Forcing gap-1 simplified morasses
is an exercise, similar to forcing Silvers’s W, in [Bu0].

For many combinatorial problems (see e.g. [Ka0], [Kal], [$81], [Ve0])
simplified morasses themselves were not enough, VELLEMAN in [Ve3] de-
fined the notion of linearizing sequences, and the notion of simplified mo-
rasses with bust in diamond. He showed the consistency of their exis-
tence for all but not weakly compact regular height by forcing in [Ve3].
H. D. Donder showed the following: (a) if there is a (k, 1)-simplified morass
with linearizing sequences then x is not weakly compact, (b) V = L implies
the existence of (, 1)-simplified morasses with linearizing sequences for all
x not weakly compact cardinal,

Velleman’s simplified morasses provide us easier applications {con-
structions) since their structure are indeed simpler than Jensen’s morasses’,
and the existence of these two kinds of morasses are equivalent.

Looking for gap-n (n > 1) simplified morasses we have to emphasize
their main property which is mainly used in applications: in k& many steps,
using objects of size < k, we can build ar object of size &% (if n = 1) or
of size k*" {for any n), and so we can fix all <  size subset of k*".

VELLEMAN in [Ve8] defined the gap-2 simplified morasses and showed
the consistency of their existence by forcing. JENSEN in [Je2] gave a direct
construction of gap-2 simplified morasses from his original gap-2 morasses.
As have we mentioned in the Introduction, Morgan and Szalkai indepen-
dently defined higher gap simplified morasses. MORGAN [Mo)] constructed
these kinds of morasses from Jensen’s original higher gap morasses, his
definition can be seen in our Definition 3.1. The present author in [Sz1],
[S22] gave an alternate, inductive definition of higher (finite} gap simplified
morasses, which are more similar to Velleman’s gap-2 definition of [Ve8].
The idea: we build higher gap structures from suitable pieces of lower gap
ones: using the natural connection among them. Then he constructed
them from Morgan’s higher gap morasses. The gap-1 special case of both
variants (Morgan’s and Szalkai’s}, give exactly Velleman’s gap-1 simplified
morasses. Furthermore, our definition presented in this paper gives also
in the gap-2 case Velleman's gap-2 simplified morasses.
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For application of higher-gap morasses we can only refer to [Mo], [Sz1],
[S22] and {Ve8]. In [Sz2] we also discuss several properties (similar to the
ones in [Ve8}) and an application of our higher gap simplified morasses,
and a definition of full linearizing sequences for higher gap morasses.

We do not know any forcing axiom equivalent to higher gap morasses,

It is interesting to note that any gap simplified morasses (Velleman’s,
Morgan's and our variants) can be defined of height wp while Jensen’s orig-
inal definition of morasses is meaningful only for height > w;. Further,
VELLEMAN in [Ve5] showed that (wp,1}-simplified morasses do exist in
ZCF, and in [Ve9] he showed that his {w¢, 2)-simplified morasses do exist
supposing the existence of a {wy, 1)-simplified morass. This latter assump-
tion is necessary since for each n < wp if there exists a (x, n)-simplified
morass, then there must exist (k*?, m)-simplified morasses where 0 < s,
m < n and m+ ¢ < n (see our Statement 1,12},

Some noncommon notation

f o g denotes the composition of any functions f and ¢:
(f o 9)(z) = flg{z)) for any z € Dom(g) s.t. g{z) € Dom(f).

f | H is the restriction of the function f to any subset H of Dom(f),

f"H == Range (f | H) is the range of f to the set H for any subset
H of Dom({f)

id oq is the identity function for any structure M.!

f™ and g™ are short notations of sequences and double sequences,
(fi :1 < 8 and {g;; : i < j < 6 resp. if # is known but any fixed
ordinal. These sequences have length 8. We denote the resirictions of these
sequences to , that is the sequences (f; 14 < () and (g:;:1 < j <), by
f7 1 {¢+1) and g™ [({ + 1}, resp.

|H| denotes the cardinality of H, in case H is a set, and the length of
H.,if H is a sequence. .

In this paper s always denotes a regular infinite cardinal, possibly
countable.

IThis is clear if M is simply a set. For other relevant structures we will define this
notion later in its right place,
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1. Definitions

In this chapter we give the definitions of our higher gap simplified
morasses. Because of the cumbersome technical details, to warm up let us
recall the definitions of Velleman’s gap-1 and gap-2 simplified morasses,

which will be done in Section 1.a. We present our higher gap definition in
Section 1.b.

1i.a Gap-1 and -2 simplified morasses

For easier understanding our higher gap morass definition now we
state here Velleman’s original definitions of gap 1 and gap 2 simplified
morasses from [Ve2] and [Ve8], respectively.

In what follows x always denotes a regular cardinal.

i
1.1 Definition [Ve2], M = ({3,]’) is a gap-1 simplified morass of
height % {or a (&, 1) — SM for short) iff

(0) ¢ = (pa : @ < &) is an increasing sequence of ordinals @, less than

k for a < K, px = &%, and ? = (Fag ' @ < § < K) where Fo 8
are nonempty sets of order preserving functions f : @, — g for
a<B<K

(1) Va< B <K) |Fapl <&

(2 Va< B<yEK) Fay=FpyoFap={fog:f € Fpy g€ Fap}
{composition)

(3) (Voo < K) Faasr = {id, ha} where id : @5 ~+ @, is the identity,
and h, is a shifting function: that is for some 0y < @, (the so called
splitting point) we have hy(§) = £ for § < 0, and ho{ga+() = @at(
for 04 +( < ¢ {amalgam property)

(4) For every o < « limit, 81,8 < o, fi € Fpiay 2 € Fppa there exist
av: B1,8: <y<oand by € Fg,y, hy € Fa, and g € Fyy such that
fi=gohyand f, =gohs.

(5) (Yo < & limit) (VA< a)

Pa = U{f Yoa: f € Faa} (covering property). 0

VELLEMAN [Ve2] calls these structures “neat expanded simplified mo-
rasses”, but later on (in [Ve3], [Veb], [Ve8]) this definition becomes the
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definition of simplified morasses. We mention again that in Velleman’s

and in our definition k may be wy, but not in Jensen’s original definition.
Moreover, the above structures exist in ZFC also for k == wy as it is shown
in [Ve5).

Now we turn to gap-2 structures,

If we replace simply ¢ = &% by @, = st in (0) then the existence
of such structures is inconsistent, so the definition of gap-2 simplified mo-
rasses is nof so trivial, Velleman’s idea is the following. We have to build
up s+ from objects of size less than x in & steps, which can be done
by building up a (x*,1) simplified morass itself in x steps, in each step
using a part of the final morass of size less than x, a so called fake morass.
Of course in this case we have to define aiso the embeddings between
these gap-1 fake morasses, Definition 1.2{vii} gives the definition of gap-2
morasses, but before we need some preliminary definitions, In Defini-
tions 1.2(i) through (vil} & > wp is a regular cardinal. These definitions
are taken from [Ve8].

N .

1.2 Definition (i). M = ($,f) is a fake gap-1 morass segment of
height # and of size less than & iff # < x, and M satisfies {0) through (5}
of Definition 1.1 with the below modification:

=

N‘;:((taa:agg>1 ]:=(J:aﬁ:a<ﬁsg)s Lo < K.

We denote the height of M by ht{M), that is ht{M} = 4.
= o, =
1.2 Definition (3i). Let M = ($,G) and N = (¢, ) be fake gap-1

morass segments of height & and #, resp. Call the function set

5 =
f={f", F, f)an f: M > N embedding iff
(1) f~ : (84 1)~ (8" 4 1) is an order preserving function, f~(8) =4¢'

(2) ? = (fe 1 ¢ € 6) where f¢ 1 ¢ —+ @p-(¢y are order preserving
functions for ( < 8

iy
(8) f ={fte:¢ <€) where feg: Gee — Gl (), g-(gy are functions for
(<§<t

{4) felog) = o‘w{{} for { < # where o¢ € ¢ and o}“{{) € cp}_{{} are the
relevant splitting points

(8) fenlcob) = fen(c)o fee(b) forb € Geey ¢ € g, (< <<
(6) feob= fee(d)o feforde G, ( <0
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=

i,,? Definition (i), Let M = (@, G} be an initial segment of M’ =
(9,9, that is § < 6, @}, = o for ¢ < 0 and Gf, = G for ¢ < £ < 4.
Then the embedding f: M — M’ is called a left branching embedding
M f~ [0 ==id [0, fr =id [ ¢ for { < 8, fee =id | Gee for ¢ < € < 6,
F{(8) =&, fo € Ghe and (by (vil)8))

Sea(BY = fra(B)o fo = faob  for{ <@ and b€ Gey.

1.2 Definition (iv). f: M ~+ M’ s called a right-branching embed-
o = =

ding iff M = (i, G) is an initial segment of M’ = (, ') and for some
ordinal 5 < 8 we have:
(1) f-In=idlnand f~(n+)=0+(ifg+( <O
(2) fe=d[pcfor{<nand f, € G,
(8) fee=id [ Gee for (<€ <

and fee "Geg = Gpe ),y fr 1 <S¢ <E <0
7 is called the splitting point of f.

1.2 Definition (v). If M, M’ are as in (iii), then ¥ is an amalgam
Hf it contains all left-branching M —» M’ embeddings (for all fy € Gu),
exactly one right-branching embedding, and nothing else.

1.2 Definition (vi}. The composition A = g o f of the embeddings
f:M > M and g : M —» M" is straightforward: b : M - MY
where ™ = g~ o f~, h¢ = gg-(¢) © f¢ for any ¢ < ht{M)}, and by =
95-(¢) -6 © Jeg for any ¢ < £ < ht{M).

Now follows the definition itself:

. m b
1.2 Definition (vii). The structure M = (@, G, 4, F) is called a (x, 2)-
simplified morass, or {x, 2)-SM for short, iff
=
(0) (8) M, ={p,G)isa (x*, 1)-simplified morass
o d
(b) 8 = {8, : & < k) where 8, < x for & < &, 6 = k%, and further
E
the structures M, = (E} F{6a+1), G (8,+1)) are gap-1 fake
morasses of height 8,, further M, is an initial segment of My
fora< g <k

{¢} M, are of size less than s for o <k, {thatis, ¢, < K for { < 8,
and {Geel < k for { <€ £ 8, and for o < &).
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=
(d) F &= (Fag : @ < § £ k) where F, 5 are sets of My - Mg
embeddings for o < 8 < .

(1) Va<B<r) |Fapl<r

(2) (Va<ﬂ<7§n) faqm}.ﬁﬁo aﬁm{fog:fef,ﬁmgefag}
(8) Va< &) Fgaasris an amalgam

(4) For o < & limit, 81,8y < &, fi € Fpay f2 € Fp,a there exists
a7t Bubr<y<oand by € Fgo, hy € Fgoy, § € Fyy such that
fi=goh; and fr = goh,.

(5} (Vo < « limit)

(a) 8o =U{f"8p: f € Fpa}
(b) (V¢ < 6) e i
o= Hfz"ez: F7(C) = ( where (38 < a) f € Fpo & ( < 83}
(©) (VC<£<0a) ) B
Gee=\UHfeg"Gre: Q) =¢, [~ (©)=¢ (38<a) feFp, & (,E<Hp).
End of Definition 1.2. ]

VELLEMAN in {Ve8] forced (k, 2)-simplified morasses for any regular
& 2> wo while JENSEN in [Je2] constructed gap-2 simplified morasses from
his original gap-2 morasses which are usually are constructed in L for
K > wy.

Further VELLEMAN proved in [Ve9] the following interesting result
in ZFC: “There ezists an (wq, 2)-stmplified morass iff there is an {w;, 1)-
stmplified morass.” {Note that M, is always an (s, 1)-simplified morass.)

Further, every gap-2 morass contains a gap-1 one of the same height:

. -
it is esy to see, using the notation of Definition 1.2, that (8, H) is a (x, 1)-

»
simplified morass, where H = (hog:a < B < s)and hag= {f" [ 8, :
f € Fap}fora<p<x.

1.b Higher gap simplified morasses

In this section we present our definition of higher gap simplified mo-
rasses. The definition is by induction on the gap of the morass. More
precisely we define several notions in connection with simplified morasses
by simultaneous induction on their gap in Definition 1.8 through 1.10.

In what follows all morasses are stmplified ones,

The first of these definitions handles the gap-0 case.
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Definition 1.8 (i). M is a gap-0 simplified morass segment (SMS)

iff M =6+ 1is asuccessor ordinal. The height of M is ht{M) = 8.

M is a (&, 0}-morass (SM) iff ht(M) = « is a regular cardinal.

M is an initial segment of N iff M < A (they are ordinals!}. We denote
this fact by M < N,

(1) For gap-0 SMS’s M = 841 and NV = Z+1 wesay that f 1 M o N
is a gap~0 embedding iff f is an order-preserving function from M to N/
and f(#) = Z.

(tii}) An embedding f: M — N is called shift or right branching iff
for some ordinal 6 < 8 we have f(£) = £ for £ < o and flo+{) =864
fore+( < 8 (and f(8) = of course) where M =8+ 1 and M= T4 1.
In this case o is called the splitting point of f.

(iv) idg : & — & is the well known identity function (the identity
embedding on 8},

(v} A family F of M —» N embeddings is called an amalgam iff
F == {d,r} where r is & shift and d [ & = ids and d(8) = =, where
Mm@+land V=E41. " o
In what follows n < wg is a fixed natural number. The Definitions 1.4

through 1.10 below are made simultaneously by induction on =, the gap
size of our morasses. .

Definition 1.4. For any fixed n < wy
- .

(i} M = (.X}ff,f) is a gap-(n -+ 1) simplified morass segment {SMS) of
height § (ie. ht{M) = 8) iff 9 is any ordinal and

(0) M = (M, :1 < 8 is a sequence of gap-n SMS’s, M; < M; are

b

initial segments for ¢ < j < 8. Further, F = (F}; 1 1 < j < §) where F};
is a family of gap-n M; —» M; embeddings for i < j < 8, satisfying the
below properties:

(a} Fiis1 is an amalgam with splitting point o; < ht{(M;) fori < ¢

(b) Fis=FryoFu={fog: fe€Frj, ge Futfori<k<j<t

_ {(composition)

() M= U{f"M;: feFy, i<jiforj <8 (covering property)

(d) Forevery j < #limit, i < jand fi, fy € Fyj thereisa k, i<k <
and there are embeddings ¢ € Fi; and hy, by € Fjp such that fy = gohy
and fz =go hg.
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(i) The gap-(n 4+ 1) SMS ::4 s {&,?} is an initial segment of the
—

gap-(n + 1) SMS NV = (N, G), denoted by M < N iff ht(M) < ht(N),

M; =N; and Fyy = G;; for i < j < ht{M). i

We again stress that all the notions we use are already defined by
simultaneous induction on the gap of the morass (that is, on n).

Definition 1.5. (i} Let M = (EA’,?‘) and N = (/Tf, 3) be gap-{n+ 1)

SMS’s such that M is an initial segment of A/, ht{M) == § and t{N)} = E.
- =

Then f=(f", f, f) is called an M = N gap-(n+ 1) embedding iff

(a) f~ : (@+1) ~ (E+1) is an order-preserving function, f~{) = ()

(b} }t = (fi 14 < 8) where f; 1 My = Ny, are gap-n embeddings
fori<é@

f= 4
(€) f={(fi; 14 < j< ) where

fig i Fig = Ge-tiy.-5)

are functions for ¢ < j < # satisfying properties (d} through (f) below

{d) if & € Fii41 18 a (gap-n) shift embedding with splitting point
a; < ht{M;), then

fiir1(B) € Gpm(y.5-Gp)
is also a shift embedding with splitting point (£i}~ (03} < ht{M () for
all 1 < 8
() fiilcob) = frj(c)o fix(b) forallb € Fix,c€ Frjandi<k<j< 8
(f) fiob=fij{(b) o fi and

Range (f; o b) = Range (fi;(5)) " Range (f;)

forallbe Fi;, 1< j <8

(ii) The identity embedding id s : M ~» M is defined as idag =
(f”,?, ?) where f~ = idpya), fi = idu, and fi; = g, for i < j <
ht(M). O
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»
Definition 1.6. If f = (f=, f, f) is as in Definition 1.5(i) then we
define

F'(M} = Range ()
;= Range {(f™) UU{R&nge (fi}:1 < B}UL}{Range {(fi) i< j <8}

{(Here we use disjoint unions.) 0

The composition and identity of gap-(n-+ 1) embeddings can be easily

defined and are left to the reader. '
- = =

Definition 1.7. Let M = (M,F) and N = (N,G) be gap-(n + 1)
SMS’s, M < N is initial segment, ht{(M) = 8, ht(NV) = Z and let f =

-+
(Ff~y F, ) be an M — N gap-(n + 1) embedding. Then

(i} [ is left branching iff f~ [ & = idy, f~(6) = Z, f; = iday for
1< 8 fs €Gaz, fij =g, for i <j <@ and fig(b) = frobfori <4,
be Fis. '

(i) f is a shift or right branching iff for some ordinal o < ¢ (the
splitting point of f) we have

(@) f~(i)=ifori<o

(b) f~lo+)=0+(foro+(<¥F

(&) fi=idpy, fori<o

{(d) i = id_’F"-J- fori<j<o

(e) fo € Fos

£) G-1iy, 0~y = Jiri "Fisforo<i<j<é. ]

Definition 1.8. A family F of M — N gap-(n + 1) embeddings is
called an amalgam iff F contains all possible left branching and exactly
one right branching embeddings (shift) and nothing else. O

Definition 1.9, For any gap-0 SMS M == 8 +1 the size of M is | M.
For gap-{n+ 1) SMS M = (Jci,?') the size of M is defined by induction.

Ol Tt as

IMp=[hAM)]+ Y M+ Y 1

i<ht{ M) i< <ht{M)

which is a cardinal. 1
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Definition 1.10. Let x be any regular cardinal.

{i) The gap-0 SMS M is called a gap-0 simplified morass of height
K, or {k,0)-SM for short, if M =k + 1.

(11} For any finite n the gap-(n+1) SMS M = (chf,?'} is a simplified
morass of height x, or (k,n + 1)-8M for short, iff
(a) ht(M) =x+1
(b) [Fyl<nfori<j<x
{o) Mil<rfori<s
{d} My is a {7, n) simplified morass.

This is the end of the inductive definition of gap-n simplified morasses.
O

We stated that our definition in gap-1 and gap-2 cases covers Velle-
man's definitions. The careful reader may observe that all our Defini-
tions 1.3 through 1.10 deal with structures of successor length whileVelle-
man’s gap-1 definition does not (see Definition 1.1). This is a technical
difference only: from any gap-1 morass we can construct another one, in
which each , is a successor ordinal for @ < &, see e.g. [Ved).

Below we define some special parts of higher gap simplified morasses
{we could call them “skeletons”) to state the result that any higher gap
simplified morass contains several smaller gap simplified morasses. Qther
special parts of higher gap morasses are defined in [Sz2]. That work alse
contains a list of basic properties of higher gap simplified morasses.

All the parts of the below definition are made simultaneously by in-
duction on the gap.

Definition 1.11. (a/:) ’I‘he t-th reduct red(M) of a {x, n)-simplified

morass segment M = (.M ]—'} for t < n is the below gap-(n ~ 1} simplified
morass segment: redg(M) =M, red, (M} =0+ 1, andfor0 <t < n

red, (M} := ((!‘edf(M,‘) 11 < f), (redy(Fij) 1e<F < 3))
whereM {(M;:1< 8}, f {(Fijri<jgdy,

ed;(Fi;} = {red:(f) : f € Fi;}

fori< j<8, and
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(a/i) The t-th reduct red;{f) of a gap-n embedémg f : M= N
between s;mphﬁed morass segments M = (.M 7 yand NV = (JV ) 3), [
(£, f f) for 0 <t < n is the below gap-(n — £} embedding:

red; (f) : red (M) = reds(N)
where redo(f) := f, red,{(f) = f~,and for 0 < t < n

redy(f) = (£~ redy (), reds (F))

where
reds(F) = (reds () : § < 6)
and
j—3
redg(f) b (red;(f,-j) i< i< 3}
where

red;(fi;) : red:() = red;(fi; (B))

for b€ Fiyand i < § < 0, and as usual, f = (f; :i < 0) and f = (fi; :
i<jsh).

(b} The Pa(xt®, m)ereducts of a (x,n)-simplified morass M for
0< s m<n m+s<n are defined as follows:

Pu(st?,m) 1= Pag (k¥ m) for s > 1, and Ppy(k, m) 1= redp..pn (M)

i uP el e
where M= (M, F}, M= (M;:i<r)and F=(Fi; 14 << &) W]
Staternent 1.12. If M is a (s, n}-simplified morass, then Pp{s¥*,m)
are (x**, m).simplified morassesfor 0 < s, m < n, m+s < n.
The statement can be proved by induction, using the inductive defi-
nition of our morasses, J

2. Morgan’s definition

We shall prove in Theorem 3.7 by using CHARLES MoORGaN’s {Mo]
variant of simplified morasses and his resuls, that the existence of morasses
of his kind are equivalent o the existence of original morasses of R. Jensen.

In this section we present MORGAN’s definition from [Mo].

First we need some notation, also from [Mo].
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2.0 Notation. In what follows g is a sequence of ordinals,
8={(81,...,8;), the length of 5 is |s| 1= .> & is the empty sequence and
|@] = 0. We never mix the ordinal £ and the singleton (£}, §™r denotes
the concatenation of the sequences g and r. Finally, for any &k < |g] we let
8 1k = (84, 8,...,8k) the restriction of 5.> Especially welet 5| 0 := @.
Finally we let gl := g | (|g] — 1), which e.g. implies {£)] = @ for any
sigleton (£). In some complicated formulas we write simply s instead of s.

"

Now we quote verbatim CxH. MORGAN’s original definition from [Mo.
We only made some highlights, footnotes, and tried to correct all the
misprints of the manuscript [Moj.

To understand the forthcoming definition easier let us make some of
our own comments before. The morass consists a lot of sequences and
functions among them, all arranged in a sense of a hierarchy of n level,
where n < wy is fixed, denotes the gap of the morass. To belong to the
#’th hierarchy level for a sequence s, we can not say simply that its length
is at most © - 1, we have also restrictions on i{s entries. This complicated
assumption is declared in (M + ¢) below. This is similar to the notion of
“co-ordinates” of our inductive higher gap morasses, defined and used in
connection to applications in partition caleulus in [S22].

We again emphasize that we quote Morgan’s definition verbatim.

2.1 Definition [Mo). Let n be finite and % be an infinite cardinal. The
structure

((3; ca € Y, (fi,ﬁ:agﬁg ¥y 1i < n)

is called a {k, n)-Morgan-simplified morass iff the below properties (M-}
and {M0) through {M6) hold for any ordinals i < n and a < 8 < x** and
for any family of functions f € F} 4

(M+1) § = {51, ..., 8;) is always a sequence satisfying |s| < n—-(i+1),
perhaps s = @. Incase s # @ we have 8; < i, and spyy < Gif" for
0 <k <|glm 74 Wewrite (8) € (M 1) if g satisfies the above properties.

*T'he indexes Tun from 1 through 7, this is only for simplicity, instead of the usual run
from © through 7 - L.

30bserve that the definition of s | k is not the usual one, too.

#For simplicity, in the next section we shall allow to use the symbol s; even in the case
g = @, when sg will denote the o fixed there. This also differs from [Mo].
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(MO) f € ¥}, 4is a disjoint family of functions:

F={rulU{fwo 1o <8 i =1sl, s€ (M +1)}
UU{f{g}a,‘r e r< gi;l"lﬂ’ j=lgl, se M+ z)}

where _ _
fil+1o6,+1
and

. gidis f418 |41
AR AR S E Y A AR

are order-preserving functions,

: i EALIE
fon  FarlHt 5 F },,el:)! Jalr)

is a function where fa = f and f, = figps, for j = [g.®

Notation. We are rigorous, so we write fy instead of f (the single
function in the first bracket}. This allows us simply to write f (standard)
instead of f (boldface).®

Further in what follows forg ¢ (M-i- i), 18| = 7 < n = (i 1) we define
flas .

f{(ﬁ) = (fa(o1)s fo (82)s -0 fa?(""ﬁ))'?_ '

Of course for f € F} ., g € Fi g @ < B < v < &% we define fog € Fi,
as:

fog {fﬂogz}UU{f(_}Q(o')agsa g<ﬂ'+l §3| 8€(M+%)}
uU {f{g‘igngg{a},s._zf} ° Yo O ST S 93? J=lgl, g€ (M+ *)}

5This defines the functions f, for s € (M +1), I8} < n ~ (i + 1)} by induction on
|‘.’.; P fo e f and fL = f{;l)!,‘ where i= I.."}s that is f{i)cr = fg"a and f= fa.

In {Mo] the values f,(&) are defined similarly as shorthand, but our definition in our
foolnote (11) for {(M4a) some pages below, is different from the present one, since for
e fr ¢ FE“’}“) by the present definition.

€You can not find these notations in {Mo}, we use them for precise discussion. Farther,
on the basis of the previous footnote we could write fy instead of fi,),, but this will
denote ancther thing, see the footnote {11) of {M4a).
7tMo) uses f¥ instead of f{. We altered the notation for technical reason {our text
editor) only.
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(M1) (Vi<i<n) (Ya<h<nt
8, <xt? and i, =kt and® |F | < kT

(M2) (Vi<n) (Va<B<s™) (VfeFi,)

(@) (Vae (M +d), j=1g) (V6 <o <7 <o) (vbe FiEHY
(¥ ¢ e FiHlH

fae, (€0 8) = figo.r(€) © flape, o (B)
(b) (Ys€ (M+i),j=d) (V€< <O (vhe 7
fpr o b = frare () © frare

() (Vk<n~{(i+1)) (Vs€(M+i)):

if |s] = k, € = s, and the splitting point!® of f” ¢ei1 18 0g, then

folod) =05,

(M8) (Vi<n) (Va<B<y<nt)
f;ﬂ_”figno'?;,ﬁ = {fog:f¢€ fém g€ f;,ﬁ}

(M4) (Vi < n) (Ya < s*) Fi, = {id} and (Vo < &™) F} ., =
{d:dxid} U {hi} where 1d must be clear, & and ki, are deﬁned as:

%[Mo] Chapter IV omitted the assumption [f;,ﬁ! < gt probably only by accident,
since in other parts of {Me] it is required for 1- and 2. gap morasses,

F(M+) lists ali possible sequences and so the requirement “¥s € (4)...” immediately
implies:

¥ 0L} (Yra S OET(Yrs S 63T (VE SR Bs € (M 4+ 4))
o= (rikuw--ark!‘f}”'
The eriginal definition [Mo,2¢] verbatim is the following: _
“WE 38 Jk = [h{s) such t.hat, § = 8.1 and if o¢ is the splitting point of f;:‘;gl then

floe) =01 a6y NB. in [Mo] 5= {80,..., 8xuy) if [#] ==
10The gplitting point will be defined in (Mdb).
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(4a) d ~ id (d is almost the identity) for d ¢ F} s i do [ 8, =
id | ¢, and d¢ GJ"“ (¢ for £ < 8,111
digi e = {dgs ){gja for 8,75 € (M + 1) and & < g5l
finally dig)¢ = id for s € (M + i) and 5 < 6.

(4b) f € Fi 41 is a shift for any i < n, a € &+ iff for some ordinal
o=0l <8 (spiattmg point) we have fo [ o =id | o,
fz(cr+'r) b +rforo+r <O, flyge=idifs; <cors=0
and{ <o, f, € f“”‘ (NB. fo(o) =8,

e = Uodiae and fe "Fiid = Fla(er et Pr € SC S
In what follows, h%, denotes a fixed shift function3.
(M5) (Vi< n) (Vo < &, o limit) (V5,01 € &) (Vf{) € féa.a’ fi € f{fi;,a)
Gy:fuba<y<ea) BfgeFh HeFh,) GgeF,)
fo=gofy and fi=gof]
(M6) (Vi<n) (Va<x*, alimit)
(6a) 8, = U{fL8 - / € Fiou < o}
(6b) (Vo€ (M+19) (V€< 7, j=1s)
82+§£|+1 _ U{f{ afl'fg'”‘}“l’ |41 f e fgcn fgf (65) - 6! f((ﬁr)
=g, B <o} |

(6c) (Vse (M+4)) (VE<7 <O, j=1))
FF = Ul e FEF ™ 1 £ € Fho S0 @) =6 Ju(e) =1,
fYs) =5 B<a}
End of the Definition 2.1. O

11{Mo] does not define neither d¢ nor dps . These may be the following:
Definition. Foranyi<n, a<p<xt fe ‘F;.ﬁ and r 5 8, we let

o= et s € Fra=r}ul {fipec € fro =7}
Now the requirements f, € .‘f’r ‘,3(,_} and so dy € 5"€ de(€) Me meaningful,
12Using the previous assumption and (4), d¢ = id € 3" 2 must be for £ < 65,

1350 ¥} 441 coOntains exactly one shift, denoted by h‘
4In [Mo} we find “Va < x*¥...” which must be a misprint.
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3. On the existence of higher gap inductive morasses

In this selection in Theorem 3.7 we show that the existence of higher
gap simplified inductive morasses we defined in Section 1 follows from the
existence of morasses defined by professor RONALD JENSEN in [Jel]. This
immediately gives, that in case V = L for every regular x and firite n < wp
there exist (%, n)-simplified morasses in our sense.

We prove Theorem 3.7 by using CHARLES MORGAN’s [Mo] variant
of simplified morasses defined in the previous section, and his resuls, that
the existence of morasses of his kind are equivalent to the existence of the
original morasses of R. Jensen. We construct our morasses using one of
Ch. Morgan’s morasses of the same gap.

We think however, the existence of morasses even with full linearizing
sequences, defined in [Sz1) or in our thesis [S22] could be proved by a
{complicated) forcing argument, similar to the one in [Ve8],

Now we start to show how to construct our inductive simplified mo-
rasses from Morgan's above defined morasses. To avoid confusion call
Morgan’s morasses (k, n)-Morgan-morasses and ours simply (x, n)-sim-
plifled-morasses and fake morasses Of morass segments.

3.1 Theorem. Let n < wg, & be a regular cardinal, both fixed, and
let
e ((6; ca <kt (Figrag et i n)

be a fixed {k, n)-Morgan-morass. Then we can construct from { a (x,n)-
simplified morass (in the sense of Definitions 1.3 through 1.10).

Proor. We refer simply by (M+) and {MO) through (M8) to the
parts of Definition 2.1, O

3.2 The construction. By induction ont (1 € ¢t € n) we construct the
gap-(t — 1) fake morasses A} and the families G, of gap-(t — 1) mappings
among them for £ < ¢ < x*("=% using 4. Of course we will take care of
the assumption N} < A for £ < ¢ < &*{"~*), Moreover, the structures

M= ((NEE <) (G €< (<))

will be gap-t fake morasses for each 7 < x*{*~% and even M ey will be
a (7"~ t)-morass. This means, that finally in case ¢ = n the structure
M? will be a (x, n)-morass.
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Each function g € Gf, will be of from g = g(f) for some f € ™ for
all € < ¢ < k"9, We mean that

0 Ft - O
is a bijection (one-to-one and onto).

To start with, let M% := r 4 1 for r < x*™ and
. S ] _ aned
Nf '_Mg?—z\—e? "i"l
for £ < k*™1, Let further Q’éc s }‘E‘C—i for £ < ¢ < k™1 and

Mbi= (Mg <), (Frtig< g <))

for r < g¥n-1,

8.8 Statement. ML is a l-gap fake morass for 7 < «*{"~1) and

Niuey I8 a (&1 1)-morass.

Proor. Using (M 4 ¢) we have only @ € (M + 1) since ¢ = n — 1,
So each element of G}, = Fg' is of form 6771 — 6271 by (MO) (ie.
f=faforfe f&”z) and these functions are order preserving. By (M1)
we have 8?“1 < kHm-1) and ].77;<”1| < x50 for £ < ¢ < k1) and

" ey = &1, By (M3) we have
il -1 n—1
Fem =F0q oFex

foré<{<ng bl

By (M4) Fj cyy = {idm, he} and idy [ 627% =id [ 6777, idn(6271) =
3?_;_“11, he | o¢ =id | o¢ {the ordinary identity) and he{og -+ 7) = 3?”1 +7
for og + 1 < 677 for some g < 677* and for each £ < ("1 (M5)
ensures the amalgam and (M6) the covering property. ]
The inductive step ' |

Suppose that we have constructed the gap-{f — 1) fake morasses Ng
for some fixed ¢t (1 < ¢t < n) and the families G, of embeddings of type

N} — A} have already been defined for all £ < ¢ < x+("% such that
£ <
NS Nffor§< (< k("% Suppose further, that the structures

M= (N E Sl E<C <)
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are gap-t fake morasses for each T < k*("~%) and moreover that M*,_,,
is a ("9, t)-morass. Recall further, that Gf, = g"F¢ ‘fore< (<
x4 for some function g : Fy " — Gf, by our inductive construction.

Let now define N1 i= ‘Ms""*““’ for o < k41 Next, first of all
we have to define the elements of g;j;‘, that is for each (Morgan’s) function
fe f’:ﬁ(t“) we have to define our embedding g(f) : M3 — M (in
the sense of Definition 1.5) for all & < 8 < s+~ ("1, Clearly we will then
take 55! == {a(f) : f € Fo; MV}

Let @ < # < sxtn=(41) and f ¢ .7:;““} be fixed, and let further
t = n — (t+ 1), First, for all sequence g € {M + i), |8] < t we define the
set of functions go(f, ) by descending induction on [s.

For g <31= asf) we put Qe(fm 3) = (Qe(f‘ 3)) e {f(sf}s:}
For jg| < t, 8= {s1,...,8;) we let

go(f, 8) = (30(f, £))~ U (@o(f,8))™ U (so(f, 8)™

where
(80 (f,8))™ = {fiane,
(B0 (f,8))™ = {go(f, £7)) : € < 037V}
and
(go(f,8))™ = {(polf,8))¢¢ : € < < 637 4HIH}
where

(@ ec: 96" = Onigma (= (@0l
g(b) = g{fipec(d)) for &< ¢ <op AN

Now we are able to define g(f) := go(f, @) where (go(f,?)) i= fo. This
defines g{f) for all f € f;‘;“*" and so we can let

015 = {a(f): f € K5 V).
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Remarks. Recall, that by induction we have g‘ ~lel o = 9" Fec (t-leh
and

- Tometomls
fisye,c(8) € gf,{ef Eam = 8" Fue), fs{}c)g

forbe Gec and for all possible £ < ( since |} < tie. t—]g > 0. So
the above definition is meaningful, (go(f, 8))¢c is defined on the whole set
Ged".

Let us write (go(f, £))¢ instead of go(f, s€)) which allows us, as usual,
to write

(0(f,8))™ = {(go(f,9))¢ : € < @77+ D43},

Why does it work?

In Lemma 3.6 we will show that the elements of G5} are M+ —
Né“ embeddings for o < 8 < xt-0+1) . Before that we need some
technical lemmas.

3.4 Lemma. g(f)=ffor f€ F:{;{H'l}, a< Bt o,

Proor. f and g{f) both are disjoint unions of functions either order
preserving ones from ordinals to ordinals, or of functions mapping from
and into sets of such functions, etc.

The exact proof is by induction on t. The case t = 1 is OK by
definition {see just before Statement 3.3).

Let now oo < 8 < xto—(+1} f g .7-' ~(+1) and 1 <t < n be given
and fixed. We have to show that g(f) 6 aﬁ contains exactly of the
functions fa, frge and fiyec where s € (M +14), £ < ( < 03%‘;, 7 == |l
i = n— {t+ 1). By the definition of g(f)}, g(f) is the disjoint union
of the function sets (g{f,8))~, (g{/f,8))~ and {(g(f,3))™ for s € (M +1}.
Examining the definition of g{ f} we can see that the function sets (g(f, 8))~
contain the functions fi,)e which collect the function sets (g{f,s})™, this
can be proved by descending induction on |g|. Similarly, the function sets
(5(f,8))™ contain of the functions f(,)¢¢ since by the induction on ¢ we
have g(b) = b for b € Ff and k < . The functions fiz)ec are collected
again by the function sets (g{f, 8))™. Finally g{f)™ = fa. £
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Corollaries. (a(f,8))ec = fig)e,c immediately follow for all possible s,
€, ¢, and similarly

fe= et WU {fio U flao U figror s 0 < 7 < 03701,
j=lel, s€ (M+1d), & mé}

for £ < o7~ Moreover in the above equality we should not bother
what kind of function does f; mean: in the sense of Definition 1.5 or the
above g{f); or Morgan’s function {defined in footnote for (M4a)). In what
follows we will use this equality without any remark. Further, we will
distinguish f and g(f), ¥7;® and G% 5 only in critical cases.

In order to prove Theorem 3.1 we need only one further statement.

3.5 Statement. The structures
M = (N s a < 1), (G ra < B <))

are gap-(t-+1) fake morasses for all ordinal r < k#0413 and ML _ .
is a (ﬁ+ﬂ_{g+1),t+ 1} morass.

Proor. We have to show that Mt satisfies the requirement of Def-
inition 1.4. We prove this by induction on ¢. {The proof runs through the
next 5 pages.)

Statement 3.3 proved the case ¢ == . Now let us consider the critical
points of Definition 1.4. {As we indicated, (M +1i) and (M0} through (M6}
refers to the points of Definition 3.1.)

1.4.0): N1 < MEF! for @ < 8 < w7(*~9) hold by the construction.
For the other half part of 1.4.0) (that is that the elements G/t are NEH! —
N, é“ embeddings) we need the below lemma. (W

3.6 Lemma. g(f) are gap-t NEi*' — N}*! embeddings for all f ¢
fngm'l), a< B <t and t < m.

[+3

Proor. We prove the statement simultaneously for all fixed o, § and
any sequence s € {M +1) by induction on [s| {and an outer induction on t).
To be more precise we show that

a(f,8) :N:jwlS%H w N:}_—%*iﬂ
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are gap-(t — |g)-embeddings for all g € (M +¢) where j = i3] < ¢, f ¢
fzgif'i-l)-?-lal and @ < f < xHom(t41)

For || = 0 we have (/) = g(/, ).

For the inductive step we distinguish two cases. Before, for simplicity
let ¢ mmn— (£ + 1),

In case |s} = t we know that

8(f,8) = fana 165, 12 0771 4+1

are order preserving functions, that is gap-0 morass embeddings, moreover

-1 — Al -1 o AfL

e:t +1= Nst and 9}‘”{3(} +1= thi(h}'
In case |g| < t we have

a(f,8) = (s(/,9) U {a(f, ) U (a(f. 2

where

- . aitis i+
8(£,8)7 = fana 0T+ 1 9};{’5;} +1

are order preserving functions by (M0). |
Further 6;;?'1” + 1= ht (N:ﬁ’i“) and j = |g| and
£ -
8(f,9¢c - Ge"  Ghidrhca
where = (g(f,8))~,
8(f,9)¢ = alf, 5360 : N = !

where A = {(p(f, £Y€)))~ are gap-{t — |3} — 1) morass embeddings by the
induction hypothesis. This means that

Q(f,ﬁ) :N:j~§s§+i " Nz{—é&)]+1
is indeed a gap-(t — |s|) morass embedding if 7 = || and A = g{f, 8",
again by the induction hypothesis, assuming that the requirements d)-f)
of Definition 1.5 hold.

We prove these requirements now,

1.5.d) Let

g;:;iﬁ sz {b 1 b is left branching embedding} U {k}
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where k : N, =l ¢ -1-% is right branching embedding with splitting
point

g < Gg b 1e= 92—t+igi +1:=ht (N;wigl)

and that £ < 3”_“';3" 4 1=ht (Ntﬁwﬂ)
(Recall that |5} & ¢ now.) Now we have to show that the sphttmg

point of the right branching embedding £ ¢ G zi;fz is

o, = g(f,8)f (o) < 677 1l 4 1 o bt (V712

where z = g{f, s)"{£). Using Statement 3.4 and (M4b) we know that o

is also the splitting point of the shift function of f? {;';Ial Now applying

{M2c) for the sequence r 1= g€} € (M 1) we get that the splitting point
of Frttllig

oz = fin(og) = figenloe) = af. 8)¢ (og),
and moreover
2= fen(§) = fip(©) = 8/, 8)7 ).
This implies that o, is also the splitting point of £€ G, 41,

1.5.e): Using Statement 3.4, the definition of g(f,s) and {M2a} we
have

g(f, 8)es(bo f-') 8(fs 8)es(g(bo 0)) = g{figeulboc))
= 8(fi¢co(8) © finrec(€)) = 8(figco(d) o fipec(c))
= 8(Fince(®) 0 2(figec(e)) = (£, 9)¢o(8(8)) o 8(/, Dec(8(e))
= (£, 8)¢o(b) 0 g{f, 8)gc(c)

hold for all £ < ¢ < 9 < 657 4 1, b€ i7" and c € g{7!

1.5.f): The proof of Statement 3.4 also gives g(f, 8)¢ = fig¢ for all
possible f, s and {. Now Statement 3.4 and (M2b) give 1.5.1).

This concludes the proof of the inductive step and so the proof of
Lemma 3.6. [

Now we turn back to the proof of Statement 3.5. So far we have
proved that the elements of Git) are NE*! — AZ*! embeddings for & <

B < k7~ (t+1) | Now we have to show that the structures

M e (NP 7, (085 0 )
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are gap-(t + 1) fake morasses for r < g+~ (#+1) We have to show that
MIF? gatisfies the requirements of Definition 1.4. In what follows, we will
often use Statement 3.4 without mentioning it,

1.4.0): We have already proved this just before and in Lemma 3.6.
1.4.a): We have

Gorarr={0(d) 1 dmid, d € 7y oy JU {0(hE) : bl € Fi oy}

where ¢ = n — (£ 1).
First we show that the set

{8(d) :dwid, d € 7o oy1}
gives all the left branching embeddings N¢*! — A5*1. By (M4a) we have
& [=de[0=id [ §

for 6 = 6}, and by the footnote for (M4a) we have d¢ = id € F{%!, that is
dg = id [ M{ for € < 8. Furthermore by the definition of g{d) we also have

d(gf-i Def.} - dggmtnote {M4a)} € }-,'?1‘ e ;L o

Finally dg;(b) = b for each b € Gf, by 1.5.f) and the above results.
So g{d) is indeed a M+ — N‘”“ left branching embedding f d~vid, d €

: o+t The fact, that all the left branching Vit ~» Nj*! embeddings
are of form g(d) where d & id and d € F), ,,,, is trivial.

Now we turn to the right branching elements of g;+;+ 1, that is we
show that g(hL) : NEH! — N‘“ is a shift (right branching embedding),
where k! € Fi agr is the functmn from (M4b) and i = n - (¢t + 1},
This means that we have to show that g(h{,) satisfies the requirements of
Definition 1.7.i)'5.

In what follows, for simplicity, we write h instead of A%, and & instead
of 8i,.

1.7.ii) a) and b) are trivial since g(h)™ = hg.

15Recall that F?

o,a+3 contains exactly one function hi ¢ }‘;'QH in (M4b).
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1.7.H) c): By (M4b) h(ge = id and by (M2b) hiyec = id for all
8 € (M+1), £ £ < sy, assuming either 8y < cor{s=@and £ < { < o).
Then, by the Corollary of Statement 3.4 we have g(h); =id for{ < 0.

1.7.i) d): we proved above that hge =id for{ < (< 0.

1.7.ii} e} and f): arguing as in ¢) we know that h, € F, ""1 = Q; g and

i+1 i+ .

hgc".’f"z = fh“}{} h (0 foro <€ <(<8 Sog(h)isa shkft. So we have
proved that G:'} 'a+1 18 an amalgam, and so we proved 1.4.a).

1.4.b): By (M3) and Statement 3.4.

1.4.c): Let o < x*° be limit where ¢ = n—(t+1). Using Statement 3.4
and (M6a) we have

ht (V) =0 + 1= J{f~ "h (Vf*) : f € G55, B < o)

since ht (M5*) = 65 + 1 and f~(05) = 65, for f € Gt} and § < a. Now
by (Méc)

gér = U {fE',‘r’”g;’r' :fe g;-l;l’ fm(g) = &, f_(rf) =T, f< a}

forf<r<@.
By the construction of N for § < 6;,, N{ are the disjoint unions of
the sets

he (V) =039 41 ad GF, = It

for1<k<t,1<5<t,0 <7 <ht(N]) =007 +1wherep <ht{(Nf) =
977" + 1 in case j = ¢, and p < ht (N'f?”f;i) = #777~% in case j < ¢, and
further re = ht (M) = 677" + 1 and rj.; =ht (NJ y=0n7 1

So, by (M6b) and (Mﬁc) we know that A are covered by the ranges
of the functions f,ne and f(y e where especially f(s;) = £. But f¢ is
the union of these functions, where f € Gj,, < a, (£} = & N and
N'f‘ have simiia,r structures, so

NE = fe" N e GEEL, F(€) =€ B < a)

where £ < 8. This concludes the proof of 1.4.c).
1.4.d): use (M5} and Statement 3.4.

So far we showed that MU*? are gap-(t —~ 1) fake morasses for all 7 <
ghn=(t41)
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Now we show that M¥41_ .. is a (xt7~0*1) ¢ 4 1)-morass, that is
it satisfies also Definition 1.10. (ii).

1.10. (ii)a): By the construction.

1.10. (ii)b): By (M1) and G5! = Foo ™Y for o < g < whn-tt+),

1.10. (ii)c): The structure of V! and of N for o < s¥n~(t+1) and
¢ < 9% are similar (see the proof of 1.27.c)). So, using (M1) we have that
size(NEFY) < wtn=(4)) for o < kt7=(+1) gince k(1) is 4 regular
cardinal.

1.10. {ii)}d): By the inductive hypothesis on ¢.
So we proved Statement 3.5. &

This concludes the proof of Theorem 3.1.

Theorem 3.1 and MORGAN's Theorem 7 in [Mo Ch. IV.] (which says
that the existence of & {x, m)-Morgan-morass is equivalent to the existence
of a (s, m}-Jensen-morass for every m < wp and regular k > w;) imply the
below theorem:

3.7 Theorem. If there is a (x, m}-Jensen morass then there exists a
(s, m)-simplified morass (in our sense) for m < wg and & regular. O

Using the results of [Jel], which ensure the existence of (k, m)-Jensen-
morasses for any ordinal m and regular x > w; we get:

3.8 Theorem. In case V = L there exist {x, m}-simplified morass (in
the sense of Definitions 1.3-1.10) for all m < wp and k regular. 4
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