DEPARTMENT OF MATHEMATICS UNIVERSITY OF VESZPRÉM

PREPRINT

István Szalkai:

AN OPEN PROBLEM CONCERNING SPANNED SUBGRAPHS OF INFINITE GRAPHS

Volume 2/5 (1991)

VESZPRÉM EGYETEM U. 10. P.O.B. 158. H-8201 AN OPEN PROBLEM CONCERNING SPANNED SUBGRAPHS OF INFINITE GRAPHS

István Szalkai

Let the graph K = (V, E) be defined as V: N (the set of natural numbers) and let $(m, n) \in E$ iff m and n are relative prime. Then we easily have:

STATEMENT O A graph G is a spanned (=induced) subgraph of K Iff

(*) chr(G\r(P)) < \omega for every PeV(G)
where

 $\Gamma(P) := \{ QeV : (Q,P)eE(G) \}$

is the set of neighbours of P .

This statement is an easy exercise, but is the starting point of the following general problem:

DEFINITION For (finite or infinite) cardinals KEA denote. by $\mathbb{E}_{K,\lambda} = \{Y_{K,\lambda}, E_{K,\lambda}\}$ the following graph defined as: $Y_{K,\lambda} : \mathbb{E}_{[K]}^{\lambda} = \{XSK: |X| = \lambda\}$ and $(X,Y) \in \mathbb{E}_{K,\lambda}$ iff XoY=8. The graphs $\mathbb{E}_{K,\lambda} = \{XSK: |X| = \lambda\}$ and $\mathbb{E}_{K,\lambda} = \{Y_{K,\lambda}, E_{K,\lambda}\}$ are defined analogously: $Y_{K,\lambda} : \mathbb{E}_{[K]} = \{XSK: |X| \leq \lambda\}$, resp. \square

The problem now is: to characterize all the spanned subgraphs of $K_{\kappa,\lambda}$, $K_{\kappa,<\lambda}$ or $K_{\kappa,s\lambda}$. This problem was raised by the author in

1987 ([C.p. 585]) . The following results are derived easily:

STATEMENT 1 A countable graph G is a spanned subgraph of $K_{K_{+} < \omega}$ iff (*) holds.

STATEMENT 2 A graph G of size at most λ vertices is a spanned subgraph of $K_{K_{\lambda}, k, \lambda}$ (K is arbitrary) iff

 $(^n\lambda)$ $chr(G\backslash\Gamma(P)) < \lambda$ for every PeV(G)

However, for graphs of size larger than λ (* λ) is not sufficient as Komjáth Péter pointed out:

STATEMENT 3 The bipartite graph on λ^* (ie. λ^* many disjoint edges) is not a spanned subgraph of $K_{K_*} < \lambda$

Supposing $\Gamma(P_1)*\Gamma(P_2)$ for P_1,P_2 eV(G), and $\lambda^{<\lambda}:=\sum \lambda^{\mu}=\lambda$ the following conditions are necessary for any graph G of size larger than λ^+ to be a spanned subgraph of $K_{K,<\lambda}$:

(*) There is no $[\lambda:\lambda^*]$ complete bipartite graph in \widetilde{G} (* the complement of G)

Supposing even chr(G)=2, that is $V(G)=A\cup B$, $A\cap B=G$ we have:

There is an almost disjoint partition $\{X_i \in [A]^{\lambda^2}: i \in I\}$ of A (that is $\{X_i \cap X_j \mid \forall \lambda \text{ for } i \neq j \in I\}$) such that $(\forall y \in B) \ (\exists \theta_y \triangleleft \lambda) \ (\forall i \in I)$ either $\Gamma(y) \cap X_i = \emptyset$ or $\|X_i \cap Y_j\| \leq \theta_y$

Unfortunately enough I do not have any sufficient condition for graphs G of size larger than λ to be a spanned subgraph of $K_{K, \leq \lambda}$ or $K_{K, \leq \lambda}$ or $K_{K, \leq \lambda}$ even in case $\|G\| \approx \lambda^*$ and $\mathrm{chr}(G) \approx 2$.

David Wagner (Canada) [W] has general results of this problem for countable hypergraphs.

Wilson Castrellon (Colombia) posed the following related problem: Define $K_{\overline{R}}$ as $V(K_{\overline{R}})=R$ (R is the set of real numbers) and $\{r,s\}\in E(K_{\overline{R}})$ iff r/s is irrational. Then characterize all the spanned subgraphs of $K_{\overline{R}}$. Only the following partial result is known:

STATEMENT 4 A countable (or finite) graph is a spanned subgraph of $K_{\rm p}$ iff

(+) $(p,q) \in E(G)$ \Rightarrow either $(p,r) \in E(G)$ or $(q,r) \in E(G)$ for $p,q,r \in V(G)$

REFERENCES

- [C] Szalkal, I.: Problem, in: Colloquia Math. Soc. J. Bolyai, vol 52, Conference on Combinatorics, Eger, Hungary, 1987
- (W) Wagner, D.: Representing hypergraphs by Coprimality , handwritten, 1985

University of Veszprém
Department of Mathematics and
Computer Science
H-8201 Veszprém, P.O.Box 158.
H u n g a r y