Global stability and bifurcations in a delayed discrete population model

Eduardo Liz

Received July 21, 2008; accepted January 21, 2009
Dedicated to Professor István Győri on the occasion of his 65th birthday

Abstract. We consider a family of difference equations used in population dynamics. First we recall the most relevant results concerning the global stability of the positive equilibrium. Then, using the survival rate as a parameter, we investigate the changes in the dynamics when it ranges between zero (semelparous populations) and one.

AMS Subject Classifications: 39A11, 37C25, 92D25

Keywords: Difference equations; Global stability; Periodic orbits; Bifurcations of maps; Delayed discrete population models.

1. Introduction

The aim of this paper is the study of different aspects of the dynamics of the difference equation

$$x_{n+1} = \alpha x_n + (1 - \alpha)h(x_{n-k}),$$

where $\alpha \in [0, 1)$, $k \geq 1$ is an integer, and $h : [0, \infty) \to [0, \infty)$ is a continuous function.

The motivations for our interest in Eq. (1.1) are mainly two:

First, this equation was proposed by K. R. Allen in 1963 to model whale populations. Since it was popularized by Clark in 1976, it is often referred to as Clark’s delayed recruitment model (see also [4, 17, 34] and references therein). In this context, x_n represents the number of adult (sexually mature) members of the population in the year n, $\alpha \in [0, 1)$ is the annual survival rate, and $f = (1 - \alpha)h$ is the recruitment function, which is in general a nonlinear function of the size of population of adults a