Parameter ldentification in a Respiratory
Control System Model

Ferenc Hartung and Janos Turi

Abstract In this paper we study parameter identification issues bypctational
means for a set of nonlinear delay equations which have begroged to model
the dynamics of a simplified version of the respiratory colnglystem. We design
specific inputs for our system to produce “information riahitput data needed
to determine values of unknown parameters. We also conthidegffects of noisy
measurements in the identification process. Several cadestare included.

1 Introduction

Mathematical models describing the chemical balance nmestmeof the respiratory
control system are given in the form of nonlinear, parameéggendent, delay dif-
ferential equations [3, 4, 5]. The analysis of the directopem (i.e., it is assumed
that the values of the parameters are known) corresponditigetmodel equations
shows that the system has a unique equilibrium, and thatadity of this equi-
librium depends on the parameter values (see [5] for ditailgs observation leads
naturally to the question of parameter identification in thedel equations based
on available, but possibly noisy measurements. In this ipapepresent a compu-
tational procedure, applicable for large classes of faneti differential equations
with state-dependent delays [11, 15, 16] which can be usperform parameter es-
timation in respiratory control models. We also illustratev information rich data
can enhance the effectiveness of the estimation processhémnissue we study
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is what are the most promising measurements available émtiftcation purposes
(i.e., should one measure gas concentrations or ventilattumes)?

In Section 2 we introduce our model equations; in Section 3degcribe the
numerical method we use to run simulations on the model amsatSection 4 out-
lines the parameter estimation process and contains $easestudies. In Section
5 we provide a discussion of our findings.

2 Model equations

We consider the system of nonlinear delay equations desgribsimple model of
the human respiratory control system
X(t) = ann —anaX(t) —anaV (4, x(t — 1), y(t — 1)) (x(t) —x) 1)
Y(t) = —ag1 —agay(t) +agaV (t,x(t — 1),y(t — 1)) (Vi —y(1)) 2)

wherex(t) andy(t) denote the arteriaCO, and O, concentrations, respectively,
V(-,-,-) is the ventilation functionr is the transport delay, andy; are inspired
CO, andO; concentrations. We assume that the ventilation functientieform

V(t7X7 y) = GP(I)W(Xv y) 3)

where the control gairGp(t), is a function of time. For simplicity we assume that
the time dependency @p is piecewise constant, and in particular,

Gp1, 0<t< 6,
Gp(t) = { Grz, 01 <t <6y, (4)
Gps, 6 <t.

whereb, 6, > 0,Gp1 > 0,Gpp > 0 andGpg > 0 are constant parametevg.is given

by
W(xy) =e " (x—Ip). (5)

Moreover, in (1)-(2) we have that
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gy = 863Q7ma
Mo,
Er
3 = )
23 ML02

where the normal values of the parameters appearing onghehand side of the
above equations are listed in Table 1 (See also [3]).

Table 1 Normal parameter values

Quantity  Unit Value
T min 0.1417
Q I/min 6.0
Kco, 0.0057
Rico, mmHg 46.0

0 mmHg 41.0
Mico, I 3.2
Mo, I 25
my 0.0021
ma 0.00025
By 0.0662
Ba 0.1728
Gp1 I/min/mmHg 45.0
Ip mmHg 35.0
X 0
Vi 146.0

Substitution of the normal values into equations (1)—(2)ds

X(t) = 4224277—9.223%(t)

—0.21875/(t,x(t — 0.1417), y(t — 0.1417))x(t) (6)
y(t) = —42.8946— 0.5178/(t)
+0.28V (t,x(t — 0.1417),y(t — 0.1417)) (146 y(t)) ©)

with ventilation function
V(t,xy) = Gp(t)e”*%¥(x—35), 8)

whereGp is defined by (3).
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3 Numerical Approximation

In this section we define a simple numerical scheme to apmrabe solutions of (1)—
(2). This method is introduced in [10] for linear scalar gedad neutral differential
equations, and later this scheme was extended for a large afanonlinear delay
systems in [11, 12]. Lt be a fixed positive constant, and define the notation

t
[t]h - |:H:| hv
where|[-] is the greatest integer function. Thf, as a function ot is piecewise
constant, sincét], = nh for t € [nh, (n+ 1)h). For a fixedh > 0 we associate the
system

Xn(t) = a1 — agaXn([t]h)

—a13V ([t]h, Xa([thh — [T]n), Ya([t]h — [T]h)) (%a([t]h) — 1) (9)
Yh(t) = —ap1— azayn([t]h)
+azaV ([thh, Xn([t]h — [T]h), Ya([tlh — [T]h)) (Vi = Yh([t]h)) (10)

fort > 0. For negativé we associate the initial functions of (1) and (2) to (9) and
(10), respectively. System (9)—(10) is a system of equatiith piecewise constant
argument (EPCA). Such equations were introduced and firdtest by Cooke and
Wiener ([6, 7, 8, 20]). The solutiong, andy, of (9)—(10) are defined as continu-
ous functions, which are differentiable and satisfy sys{@)w(10) on each interval
(nh,(n+1)h) (n=0,1,2,...). Since the right-hand-side of both (9) and (10) are
constant on each intervadh, (n+ 1)h), we get that botbx, andyy are piecewise lin-
ear continuous functions (linear spline functions). Thes they are determined
by their values at the mesh points. Introduce the sequences

Un = Xn(nh) and v, =yp(nh),

(3

Then integrating (9) and (10) fromh to t and taking the limit — (n+1)h—, we
get by simple calculation that, andv, satisfy

and let

Unt1 = Un+ h(au — @12Un — @13V (NN, Up_k, VoK) (Un — X )) ; (11)
Vi1l = Vn+ h(—azl — apoVn + azaV (nh, Un_k, Vn—k) (Vi — Vn)) ) (12)

forn=0,1,2,..., where for negative integerthe sequences, andv, are defined
by u, = x(nh) andv,, = y(nh), i.e.,the initial functions corresponding to the original
system (1)—(2). Therefore the sequenggeandv,, are well-defined and can be easily
generated by the explicit delayed recurrence relations-(12), so the solutions of
(9)—(20) are uniquely determined. It is shown in [11] that
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Jim Xn(t) =x(t) and  lim ya(t) =y(t)

uniformly on each intervgl0, T] for any T > 0.

Example 1. In this example we study numerically the effect of changhgdontrol
gain for the stability of the solutions of the respiratorgt®m (1)—(2). We assume
normal table values except that we use 0.25, i.e., we consider (6)-(7) with venti-
lation (3)—(5). Furthermore, in (4) we seldit= 2, 6, = 8 for the switching times,
andGp; = 45, Gp, = 60 andGp3 = 30 for the control gains. We start the system
from its equilibrium corresponding to th@p(t) = Gpy constant gain, i.e., use con-
stant initial functions

X(t)=411906 t<0, and y(t)=815645 t<0,

The numerical solution corresponding to the discretizationstanth = 0.001 is
shown in Figure 1.

Fig. 1
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We can see from the figure that the equilibrium of the systeth gainGp(t) =
Gpy is unstable, (in fact, it is asymptotically periodic if wenapute the solution for
a long enough time interval), but after switching back toxgainstanGp(t) = Gpg,
it is again asymptotically stable.

4 Parameter Estimation

We consider again system (1)—(2) with ventilation (3)-{ assume that some of
the parameters in this system are not known, and we denotakm®wn parameters
by v, ..., ym- We can consider, for example, the control gain const@pisGp, and
Gpz as the unknown parameters (in that cese 3 andy;, = Gp; fori =1,2,3), or
the transport delay can be the only unknown parametsr€ 1, y1 = 1), but we can
consider any other parameters in equations (1) and (2), threirventilation func-
tion (3)—(4) to be unknown. The goal is to determine the &loiethese unknown
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parameters, assuming we know the measurements of theos@l @i finitely many
times,ty, ta, ..., tm. One standard approach to this problem is to define a leastrasq
cost function, and then find the parameter values with the&t [@assible cost.

First we need to introduce the following notation. Assumeparameters (in-
cluding the initial functions) excepi, ..., ym in (1)—(2), (3)-(4) are fixed. Then the
solutions corresponding to particular selections of thaipeter valueg, . . ., ym of
this problem are denoted by

X(t; Vi, .- ¥m)  and y(t v, ..., V).

Suppose the measurementsxaindy at the timet; are denoted by andY;, re-
spectively, fori = 0,...,M. We will use equally spaced measurements over a time
interval [To, T], i.e.,

T-To. .
t=To+ Mo" i=0,1,...,M. (13)

Of course, any time values could be used. Then we define théurmsion by

M M
oY) = 3 (O ) =X)%+ 5 (V6 o) = V) (14)

Then the mathematical problem is to find the parameter vahles., ym which
minimize the cost functiod.

One standard approach to solve this problem used e.g., i [13, 14, 17] is
the following: find finite dimensional approximate solutod\, yN of (1)-(2), and
define the corresponding cabt as

M

M
PV V) :_Zl(XN(ti;Vlwnan)—)(i)2+_;(yN(ti;Vly---7Vm)_Yi)za

and find the minimize¢y, ..., yi) of JN. One can show (see, e.g., [14]) that, under
minor assumptions, a subsequenceéyi)‘f, ..., YN approaches to the minimizer of
J.

In this paper we consider a sequence of discretization antsshy, tending to
0, and use the approximation scheme defined in the previatisseorresponding
to hy as the numerical scheme in the above process. Thinisflarge enough,
i.e., equivalentlyhy is small enough, we find the minimizer of the corresponding
cost functionIN by a a nonlinear least square minimization code, based ocease
method with Dennis-Gay-Welsch update, combined with at tregion technique.
See Section 10.3in [9] for detailed description of this roethThen we consider the
result as the approximation of the minimizerbfHere we know that for the “true
parameters” the value of the cost function is 0, so if the mizakmethod stops at
a parameter value where the cost function is not close toed, we can conclude
that the method is terminated at a local minimum instead ofioha)) minimum.
Then we restart the method from a different initial paramesdue. Of course, we
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know that the numerical method converges only locally, schaxe to find initial
guesses close enough to the true parameter values in oroleséove convergence.
Another important issue in the parameter estimation pogeshat whether two
different parameter sets can generate the same measuseienthe question of
identifiability of the parameters. This is a difficult thetical problem (see, e.g.,
[18, 19] or Example 5.4 in [14]). The lack of identifiabilitan be another reason
for getting non converging approximations.

In the remaining part of this section we give several nunaéréxamples to
demonstrate the applicability of the above parameter asitig process for the res-
piratory system (1)—(4). In all these examples we achievaatigecovery of the
original parameters, which also indicated that we numbyicéserved identifiabil-
ity of the considered parameters.

Example 2. In this example we generated measurements of (1)—(4) gamneling to
the normal parameter values listed in Table 1 and using aaaingain coefficient
functionGp(t), i.e.,

Gp1 = Gpz = Gpz = 45.

We assume that the system is at the equilibrium, so we usalicnditions
X(t) = 411906 and/(t) = 815645 which correspond to the equilibrium values. The
measurements are taken over the intefWglT| = [0, 2] using formula (13) with

M = 11. We consider the coefficienés,, a13, ax» andaps to be unknown, and the
goal in this example is to estimate these parameter vallieg tiee measurements.
In this example we used discretization step$ize0.01 and the initial parameters

ajp» = 8.5, a13=0.3, a» =06, and a3=0.4.

The first three steps of the numerical method can be seenimé=&j The solid line
is the solutiornx, y and the ventilation functiolV along the solutions correspond-
ing to the true parameters, and the circles are the measntemithe respective
functions at sample time points. The dotted curves are theises x, y and the
ventilationV along the solutions corresponding to parameter valuesrgetkby
the numerical scheme in the first two steps. We can see thajrépds approach
to the graph corresponding to the true parameter valuesiewvée first few steps.
Table 2 contains the value of the cost function, the actuamater value, and the
error of the particular parameter when compared to the tanarpeter value at each
step. (We denote the error in the paramgtey A(y).) The method converges in five
steps, but in each parameter value a small error can be @agsedur explanation
for this error (which can be seen running the code from diffieinitial values, as
well) is that the constant solution is not “rich enough” fatter estimation.

Example 3. In this example we change the gain constants in the veptilat move
the solutions away from the equilibrium. We use switchimgets6; = 0.2 and6, =
0.4 and gain constants
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Table 2 Estimation ofa;»,a13, az2, az3, caseGp; = Gpp = Gpz = 45

15 2

step

cost

a2

a13 a2 az3

A(ag2)

A(a1z) A(ap)

A(ag3)

O~ WNEO

287.84623772 8.50000 0.30000 0.60000 0.40000 0.7233812800.08220

0.38419648
0.00077480
0.00056159
0.00043748
0.00034371
0.00034371

8.80052
8.81127
8.81142
8.81160
8.81177
8.81177

0.30321 0.86988 0.36664
0.30535 0.86543 0.37275
0.30538 0.86538 0.37282
0.30541 0.86535 0.37287
0.30544 0.86533 0.37290
0.30544 0.86533 0.37290

0.42278 4508435208
0.41203 @008634763
0.41188 €B08634758
0.41170 ®608634755
0.41153 @€908634753
0.41153 @208634753

0.12000
0.08664
0.09275
0.09282
0.09287
0.09290
0.09290

Gpr =45 Gpp=0, Gpg=60.

This corresponds to the physical case when one takes nomethis, then stops
breathing for 12 seconds (between tim2 @nd 04 minutes), but then takes larger
breaths for a while. We again try to estimate, a; 3, a2 andazs. We used the same
initial parameter values, measurementslard).01 as in Example 2. The numerical
results can bee seen in Figure 3 and in Table 3. In this caseckievad perfect

recovery of the true parameter values up to 5 decimal digitsiracy in the fifth

step.
Fig. 3
\%
50 30
X Step 0
45 25 * Step 1
Y Step2
&4 20
40
15
35
10
* *
30 * *  Stepl 5¢ ®
Y Step2 *
25 0—&
0 0.5 1 15 2 0 0.5 1 15 2




Parameter Identification in a Respiratory Control System Model 9

Table 3 Estimation ofai2, a13, a2, az3, caseGpr = 45,Gp, = 0, Gpz = 60

step cost ai2 ai3 ax a3 Aap) Alaz) A(aze) Aaza)

0 350.31169443 8.50000 0.30000 0.60000 0.40000 0.7233812600.08220 0.12000
1 51.72675038 8.86517 0.33654 0.63847 0.30804 0.358137191D.12067 0.02804
2 3.54921161 9.21149 0.25766 0.53943 0.29705 0.01181 @0B®302163 0.01705
3 0.00525638 9.21676 0.22070 0.51609 0.27984 0.00654 @6500100171 0.00016
4
5

0.00000009 9.22328 0.21876 0.51779 0.28000 0.00002 @10@000001 0.00000
0.00000000 9.22330 0.21875 0.51780 0.28000 0.00000 @OOMOO0000 0.00000

Example 4. Now we use the same measurementsfandd.01 as in Example 3, but
this time we consideGp1, Gp; andGpg as the unknown parameters in the system.
(The switching times are the same as in the previous exanftarting from the
initial guessGp; = Gp2 = Gpz = 40, we again get good approximation of the true
parameters, as can be seen in Figure 4 and in Table 4.

Fig. 4
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Table 4 Estimation ofGp;, Gpy andGpz
step cost Gp1 Gp2 Gp3 A(Gp1) A(Gp)  A(Gps)
0 483.75379438 40.00000 40.00000 40.00000 5.00000 400020.00000
1 14.01499742 47.97180 5.86922 68.70514 2.97180 5.86927Z705B4
2 0.90980645 4453413 1.28130 59.25469 0.46587 1.28130 45317
3 0.04368879 45.07905 0.28985 59.98344 0.07905 0.28985 16860
4 0.03010176 44.99316 0.28580 60.00549 0.00684 0.28580 05420
5
6

0.01160245 44.80199 0.28644 60.08301 0.19801 0.28644 83010
0.01160203 44.80199 0.28644 60.08302 0.19801 0.28644 8300

Example 5. In this example we repeat the previous experiment with th differ-
ence that in the measurementsxandy there is a random error of normal distri-
bution with absolute value less than 0.3. The correspondimgerical results can
be seen in Figure 5 and in Table 5. With these noisy measutsrttesm numerical
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Table 5 Estimation ofGp1, Gp2 andGpz using noisy measurementséndy
step cost Gps Gpo Gp3 A(Gp1) A(Gpp) A(Gp3)

485.59595635 40.00000 40.00000 40.00000 5.00000 4000020.00000
1 14.52482670 47.17405 5.54416 68.35639 2.17405 5.5441@85639
2 1.15085189 43.70021 1.16266 58.68728 1.29979 1.16266 127123
3 0.24101584 44.26992 0.20717 59.44590 0.73008 0.20717 541006
4 0.22474717 44.17809 0.20403 59.46826 0.82191 0.20403 31145
5
6

o

0.20156319 43.98286 0.20541 59.55063 1.01714 0.20541 49874
0.20156185 43.98286 0.20541 59.55066 1.01714 0.20541 49844

results still converge, but we can observe larger error§pinandGpsz, than in the
previous example.

Example 6. In this example we assume that we do not have direct measnoteiwie
the solutions< andy, instead, we suppose we can measure the value of the ventila-
tion function along the solution. L&p;, Gps, Gps denote the true parameters,

\/i = V(tl 7X(ti ; G_Pl7G_P37 G_P3)ay(ti ; G_PlvG_P37 G_PS))’ i = 0) 17 ERE} Ma

and now we use the following cost function

M
J(Gp1,Gps, Gps) = Z}(V (ti, X(ti; Gpy, Gpa, Gps), ¥(ti; Gp1, Gps, Gps)) — Vi)?

instead of the one defined by (14). Otherwise we used the gsaitisé parameters
and discretization constant as in the previous example.cohesponding results
can be found in Figure 6 and in Table 6. We can see that the mezasuts of

the ventilation contained enough information on the patamseto guarantee the
convergence of the method. In fact, in this case the lastwtepeven better than
that in the previous example.

Example 7. We repeat the previous experiment but adding a random errarmal
distribution with absolute value less than 0.3 to the mesments oV used in the



Parameter Identification in a Respiratory Control System Model 11
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Table 6 Estimation ofGp1, Gpz andGpg using measurements \of

step cost Gp1 Gp2 Gps A(Gp1) A(Gpz) A(Gps)

42.10899178 40.00000 40.00000 40.00000 5.00000 40.0020M0O000
2.63937045 48.52067 12.50361 71.69544 3.52067 12.5036169344
0.22630530 44.09782 2.03095 57.15278 0.90218 2.03095 47228
0.00867380 45.50737 0.13858 60.12323 0.50737 0.13858 23231
0.00443630 45.31892 0.13395 60.05083 0.31892 0.13395 50830
0.00044917 45.01624 0.13081 59.99976 0.01624 0.13081 00240
0.00025245 44.95685 0.12889 60.00478 0.04315 0.12889 04180

36
34

32
0

U~ WNREO

previous example. With these noisy measurements the ncehepproximations
still converge, but the rate of convergence is very slow. 8&d only the first 7
steps of the numerical method in Table 7, and the first twafésrin Figure 7. We
can observe larger error than in the previous example.

Fig. 7
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Example 8. In this example we assume that the transport delay the only un-

known parameter. If we start the system from its equilibridhen changing the
time delay has no effect on the solution, therefore it is rassible to identify the
delay from such measurement. Therefore it is necessary v the system away
from the equilibrium. We apply the same procedure as befae,we change the
gain values at the switching times as follows
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Table 7 Estimation ofGp1, Gp2 andGpz using noisy measurements\of

step cost Gp1 Gp2 Gps  A(Gp1) A(Gp2)  A(Gps)

41.06549791 40.00000 40.00000 40.00000 5.00000 40.0020M0O000
2.69930168 47.91054 12.67821 71.49751 2.91054 12.67821497151
0.26392223 43.53271 2.32477 56.08888 1.46729 2.32477 11829
0.10162997 43.60376 0.87665 57.97591 1.39624 0.87665 24@0
0.10161041 43.59960 0.87671 57.97828 1.40040 0.87671 21220
0.10148228 43.54956 0.88325 57.97853 1.45044 0.88325 214210
0.10142830 43.52050 0.89136 57.96415 1.47950 0.89136 35850
0.10135694 43.47035 0.90820 57.93390 1.52965 0.90820 66200

~No o WNEFEO

6,=02 6,=04, Gp1=45 Gppy=0, Gpg=-60.

We also observed that if we use measurements on the inteheakvthe solution is
still constant, i.e., off0,0.2], then at these points the solution again does not depend
on the delay, and the numerical minimization method will nstially converge.
Therefore now we used the intervah, T] = [0.3,2] to make measurements using
equidistant time points witM = 11. Starting front = 0.25 and usindh = 0.0005
we obtained a convergent sequence, what can be seen in Biguna in Table 8.
We get again a very good approximation of the original delye,7 = 0.1417. In
this experiment the convergence of the scheme is sensitivilné selection of the
initial parameter value. The reason of it is that if at anypgtee numerical scheme
produces a “larget, then using that the corresponding solution will be constant
on [0.3,1], therefore the minimization will fail. Also, in identifym the delay the
discretization constant has to be very small, since otlserwmall change in the
delay has no effect on the approximate solution, so the nidaition will fail. For
the same reason, in the minimization code the parametehvdeitermines the time
steps of computing approximate derivatives has to be velgtlarge (compared to
the previous examples) otherwise again the change in tlas dell not effect the
solution, so the minimization will fail.

Fig. 8

46

44

42
40
38

36
34

32
0



Parameter Identification in a Respiratory Control System Model 13

Table 8 Estimation ofr

step cost T A(T)
458.59350832 0.25000 0.10830
53.96078682 0.10704 0.03466
42.51290806 0.11226 0.02944
20.15586956 0.12306 0.01864
0.29816598 0.14364 0.00194
0.00000000 0.14178 0.00008

ar~rwWwNEFEO

5 Conclusions

We have investigated parameter identification issues implgied model of the res-
piratory system. Case studies indicated identifiabilityarious system parameters,
e.g., coefficients, gains, and transport delay. We obtastreshg evidence that "in-
formation rich” input data significantly improves the acacy of the determination
of unknown parameters. Our numerical simulations also shiaivat identification
of system parameters is more or less equally possible éthereasuring,,CO»
concentrations or ventilation data. The method presereeglik applicable to mod-
els with multiple state-dependent delays [17, 16].
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