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Identification of Parameters in Neutral Functional Differential
Equations with State-Dependent Delays

Ferenc Hartung and Janos Turi

Abstract— We introduce a parameter identification algorithm
and establish its theoretical convergence on initial valueprob-
lems governed by neutral functional differential equations with
state-dependent delays. The discretization of the differential
equation is based on an Euler-type approximation method
using equations with piecewise constant arguments. Numerical
examples are included.

I. INTRODUCTION

In this paper, making use of a general framework for
parameter identification in distributed parameter systems(see
e.g., [1], [2], [3], [20], and the references therein), we study
convergence properties of numerical schemes producing ap-
proximate solutions of parameter estimation problems for a
class of neutral functional differential equations with state-
dependent delays (SD-NFDEs) of the form

ẋ(t) = f(t, x(t), x(t − σ(t, x(t))), ẋ(t− τ(t, x(t)))). (1)

Existence, uniqueness and numerical approximations of solu-
tions for such equations were considered in [4], [7], [8], [11]
and [19] and the references therein. Parameter estimation
problems were studied in [14] for equations of the form
(

x(t)+q(t)x(t−τ(t, x(t)))
)′

=f
(

t, x(t), x(t−σ(t, x(t)))
)

(2)
(the so-called implicit neutral case). Note that (1) represents
a more general class of SD-NFDEs than (2).

In this paper, extending and refining our earlier results
(see [17] for retarded equations with state-dependent delays
and [12]–[14] for NFDEs with constant, time- and state-
dependent delays), we define a parameter estimation method
using an approximation scheme based on equations with
piecewise-constant arguments (EPCAs), show its theoretical
convergence, and study its applicability on numerical exam-
ples.

The remaining part of the paper is organized as follows: In
Section 2 we specify the class SD-NFDEs we will study and
obtain some basic properties of the solutions. In Section 3
we briefly recall the general identification framework used
in the current study. In Section 4 we introduce a simple
EPCA-based numerical approximation scheme, and discuss
the key step of the general identification procedure, namely,
the convergence of the approximate problem under a certain
double limiting process. Section 5 contains a few numerical
examples.
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Note that EPCAs were used first in [9] to obtain numer-
ical approximation schemes and to prove the convergence
of the approximation method for linear delay and neutral
differential equations with constant delays, and later in [10]
and [15] for nonlinear delay and neutral equations with state-
dependent delays.

II. A CLASS OFSD-NFDES

Consider the nonlinear SD-NFDE

ẋ(t) = f(t, x(t), x(t− σ(t, x(t), λ)), ẋ(t− τ(t, x(t), ξ)), θ),
(3)

for t ≥ 0, and the associated initial condition

x(t) = ϕ(t), t ∈ [−r, 0]. (4)

We assume throughout the paper thatΛ, Ξ andΘ are normed
linear spaces, where the norms are denoted by| · |Λ, | · |Ξ
and | · |Θ, respectively.

A fixed norm on R
n is denoted by| · |. The Banach-

space of continuous real-valued functions defined on[−r, 0]
with the norm |ψ|C = max{|ψ(s)| : s ∈ [−r, 0]} will be
denoted byC. The Banach-space of absolutely continuous
functions on[−r, 0] is denoted byW 1,∞, where|ψ|W 1,∞ =
max{|ψ|C , ess sup{|ψ̇(s)| : s ∈ [−r, 0]}}.

We will assume

(H1) f ∈ C([0, T ] × R
n × R

n × R
n × Θ; R

n) is locally
Lipschitz continuous in its first, second, third and fifth
arguments, and globally Lipschitz continuous in its
fourth argument, i.e., there existsL2 ≥ 0 and for every
M ≥ 0 there existsL1 = L1(M) ≥ 0 such that

|f(t, x, y, z, θ) − f(t̄, x̄, ȳ, z̄, θ̄)| ≤ L1

(

|t − t̄| + |x −

x̄| + |y − ȳ| + |θ − θ̄|Θ

)

+ L2|z − z̄|, for t, t̄ ∈ [0, T ],

x, x̄, y, ȳ, z, z̄ ∈ R
n, θ, θ̄ ∈ Θ such that|x|, |x̄|, |y|, |ȳ|,

|θ|Θ, |θ̄|Θ ≤M ;
(H2) τ, σ ∈ C([0, T ]× R

n; R) are such that

(i) there existr > 0 andr0 > 0 such that

0 ≤ σ(t, x, λ) ≤ r and 0 < r0 ≤ τ(t, x, ξ) ≤ r

for t ∈ [0, T ], x ∈ R
n, λ ∈ Λ, ξ ∈ Ξ;

(ii) σ and τ are locally Lipschitz continuous in their
all arguments, i.e., for everyM ≥ 0 there exists
constantsL3 = L3(M) ≥ 0 andL4 = L4(M) ≥ 0
such that|σ(t, x, λ)−σ(t̄, x̄, λ̄)| ≤ L3(|t− t̄|+ |x−
x̄|+ |λ− λ̄|Λ) and|τ(t, x, ξ)−τ(t̄, x̄, ξ̄)| ≤ L4(|t−
t̄|+ |x− x̄|+ |ξ− ξ̄|Ξ), for t, t̄ ∈ [0, T ], x, x̄ ∈ R

n,



λ, λ̄ ∈ Λ, ξ, ξ̄ ∈ Ξ such that|x|, |x̄| ≤ M , |λ|Λ,
|λ̄|Λ ≤M , |ξ|Ξ, |ξ̄|Ξ ≤M ;

(H3) ϕ ∈ W 1,∞, (i.e., ϕ is Lipschitz continuous), and its
derivative ϕ̇ is Lipschitz continuous on[−r, 0], i.e.,
there existsL5 ≥ 0 such that|ϕ̇(t) − ϕ̇(t̄)| ≤ L5|t− t̄|
for a.e.t ∈ [−r, 0].

By a solution of IVP (3)-(4) on[−r, α] we mean a
continuous functionx, which is almost everywhere (a.e.)
differentiable and satisfies (3) for a.e.t ∈ [0, α], and (4)
for all t ∈ [−r, 0].

In (3)-(4) we considerγ = (ϕ, λ, ξ, θ) as parameters of the
IVP, and defineΓ = W 1,∞ ×Λ×Ξ×Θ as the space of the
parameters with the norm|γ|Γ = |ϕ|W 1,∞ + |λ|Λ + |ξ|Ξ +
|θ|Θ. We assume that these parameters (or some of them)
are unknown, but values(X0, X1, . . . , Xl) of the solution,
x(t), are available via measurements at discrete time values
(t0, t1, . . . , tl). The goal is to find the parameter value, which
minimizes the least squares fit-to-data criterion

J(γ) =
l

∑

i=0

|x(ti; γ) −Xi|
2,

where γ belongs to an admissible set∆ contained in the
parameter spaceΓ. (Denote this problem byP).

Since by (H2) (i)t − τ(t, x(t), λ) ≤ 0 for t ∈ [0, r0], it
follows that on this interval (3) is equivalent to the state-
dependent delay differential equation

ẋ(t) = f(t, x(t), x(t− σ(t, x(t), λ)), ϕ̇(t− τ(t, x(t), ξ)), θ).

A result in [18] implies the existence of a unique solution
of (3) on [0, r0] (or on a shorter interval). Repeating the
argument successively on intervals[kr0, (k + 1)r0] (k ∈ N)
we get that there existsα > 0 such that IVP (3)-(4) has
a unique solutionx on [0, α]. Of course, if all Lipschitz
constants in (H1)–(H2) are global, then it is easy to argue
that the unique solution exists on the whole interval[0, T ].
Lemma 1 shows that bothx and ẋ are Lipschitz continuous
on [0, α].

Lemma 1: Assume (H1)–(H3), and letγ = (ϕ, λ, ξ, θ) ∈
Γ be fixed, andx be a solution of (3) corresponding toγ
defined on a finite interval[0, α]. Then there exist constants
M2 = M2(α) > 0 andM3 = M3(α) > 0 such that

|x(t) − x(t̄)| ≤M2|t− t̄|, t, t̄ ∈ [−r, α],

and

|ẋ(t) − ẋ(t̄)| ≤M3|t− t̄|, a.e.t, t̄ ∈ [−r, α].

Proof: Let M1 = max{|x(t)| : t ∈ [0, α]}, Li =
Li(M1) (i = 1, 3, 4) be the Lipschitz constants from (H1)
and (H2), respectively. Assumption (H1) implies

|ẋ(t)|

≤ |f(t, x(t), x(t − σ(t, x(t), λ)), ẋ(t− τ(t, x(t), ξ)), θ)

−f(0, 0, 0, 0, θ)|+ |f(0, 0, 0, 0, θ)|

≤ L1(t+ |x(t)| + |x(t− σ(t, x(t), λ))| + |θ|Θ)

+L2|ẋ(t− τ(t, x(t), ξ))| + |f(0, 0, 0, 0, θ)|

for a.e.t ∈ [0, α]. Therefore there existsK > 0 such that

|ẋ(t)| ≤ K + L2ess sup{|ẋ(s)| : s ∈ [−r, t− r0]},

which, using (H3) and the method of steps, yields that there
existsM2 > 0 such that|ẋ(t)| ≤ M2 for a.e. t ∈ [0, α],
hencex is Lipschitz continuous. This proves the first part of
this lemma.

To prove the second inequality, consider

|ẋ(t) − ẋ(t̄)|

= |f(t, x(t), x(t − σ(t, x(t), λ)), ẋ(t− τ(t, x(t), ξ)), θ)

−f(t̄, x(t̄), x(t̄− σ(t̄, x(t̄), λ)), ẋ(t̄− τ(t̄, x(t̄), ξ)), θ)|

≤ L1(|t− t̄| + |x(t) − x(t̄)|

+|x(t− σ(t, x(t), λ)) − x(t̄− σ(t̄, x(t̄), λ))|)

+L2|ẋ(t− τ(t, x(t), ξ)) − ẋ(t̄− τ(t̄, x(t̄), ξ))|

≤ L1(|t− t̄| +M2|t− t̄|

+M2|t− t̄| +M2|σ(t, x(t), λ) − σ(t̄, x(t̄), λ)|)

+L2|ẋ(t− τ(t, x(t), ξ)) − ẋ(t̄− τ(t̄, x(t̄), ξ))|.

For t ∈ [0, r0] it follows t− τ(t, x(t), ξ) and t̄− τ(t̄, x(t̄), ξ)
belong to[−r, 0], therefore, using (H3), we get

|ẋ(t) − ẋ(t̄)| ≤ K0|t− t̄| + L2L5|t− t̄|

+L2L5|τ(t, x(t), ξ) − τ(t̄, x(t̄), ξ)|

≤ (K0 + L5K1)|t− t̄|, a.e.t, t̄ ∈ [0, r0],

whereK0 = L1(1 + 2M2 + M2L3 + M2
2L3) andK1 =

L2(1 + L4 + L4M2). Similarly, for a.e.t, t̄ ∈ [r0, 2r0] we
get

|ẋ(t) − ẋ(t̄)| ≤ (K0 +K0K1 + L5K
2
1 )|t− t̄|.

Therefore, repeating these steps finitely many times, we get
that there existsM3 > 0 satisfying the second part of the
statement.

We will use the following elementary estimate in the
sequel. In the proof of the lemma and throughout this paper
[·] denotes the greatest integer function.

Lemma 2: Let a, b ≥ 0, and g : [0, α] → [0,∞) and
u : [−r0, α] → [0,∞) be monotone increasing functions
satisfying

u(t) ≤ a+ g(t) + bu(t− r0), t ∈ [0, α]

andu(0) ≤ a. Then

u(t) ≤ (a+g(t))(1+b+b2+· · ·+bm−1)+bma, t ∈ [0, α],

wherem = [α/r0].

Proof: The assumptions imply

u(t) ≤ a+ g(t) + bu(0) ≤ a+ g(t) + ba, t ∈ [0, r0].

Therefore, using the monotonicity ofg andu, we get

u(t) ≤ a+ g(t) + bu(r0)

≤ a+ g(t) + b(a+ g(r0) + ba)

≤ (a+ g(t))(1 + b) + b2a, t ∈ [r0, 2r0].

Then the lemma follows by induction.



III. A G ENERAL PARAMETER ESTIMATION METHOD

In this section we briefly recall a general method fre-
quently used to identify parameters in various classes of
differential equations (see, e.g., [1], [3], [20], and also[12]–
[17]). We will apply this framework for our IVP (3)-(4) in
the next sections.

The general method consists of the following steps:
Step 1) First take finite dimensional approximations of the

parameters,γN , (i.e., γN ∈ ∆N ⊂ ΓN ⊂ Γ, dimΓN < ∞,
γN → γ asN → ∞).

Step 2) Consider a sequence of approximate IVPs corre-
sponding to a discretization of IVP (3)-(4) for some fixed
parameterγN ∈ ΓN with solutionsyM,N (·; γN ) satisfying
yM,N(t, γN ) → x(t, γ) as M,N → ∞, uniformly on
compact time intervals, andγN ∈ ∆N .

Step 3) Define the least square minimization problems
(PM,N ): for eachN,M = 1, 2, . . ., i.e., findγM,N ∈ ∆N ⊂
ΓN , which minimizes the least squares fit-to-data criterion

JM,N(γN ) =

l
∑

i=0

|yM,N (ti; γN) −Xi|
2, γN ∈ ∆N .

Often∆N is the projection of∆ to ΓN , and we restrict our
discussion to this case.

Step 4) Assuming that∆ is a compact subset ofΓ, and the
approximate solution,yM,N (t; γN ), depends continuously
on the parameter,γN , we get, thatJM,N(·) is continuous
for eachM,N . Hence the finite dimensional minimization
problems,PM,N , have a solution,̄γM,N . Sinceγ̄M,N ∈ ∆,
the sequencēγM,N (M,N = 1, 2, . . .) has a convergent
subsequence, saȳγMj ,Nj

, with limit γ̄ ∈ Γ.
Step 5) It follows from Step 2 thatJMj ,Nj

(γ̄Mj ,Nj
) →

J(γ̄) as j → ∞. Let γ ∈ ∆ be fixed, and letγN → γ
satisfying Step 1. Then, in particular,γNj

→ γ as j → ∞.
Using thatγ̄Mj ,Nj

is a solution ofPMj ,Nj
, Step 2 implies

J(γ̄) = lim
j→∞

JMj ,Nj
(γ̄Mj ,Nj

) ≤ lim
j→∞

JMj ,Nj
(γNj

) = J(γ),

thereforeγ̄ is the solution of the minimization problemP .

In practice we take “large enough”N andM , and use the
solution of PM,N as an approximate solution ofP . Note
that Step 4 and 5 yield that the limit of any convergent
subsequence ofγM,N is a solution ofP (with the same cost).
It is possible that the minimizer ofJ(γ) is not unique (see,
e.g., Example 5.4 in [16]). For results on identifiability of
parameters, i.e., the uniqueness of the parameter minimizing
the cost functionJ(γ) (for simpler classes of delay equa-
tions) is discussed e.g., in [2] and [21].

In our examples, we will use linear spline approximation
to discretize the parametersϕ, ξ and θ, in the case of
nonconstant functions, in Step 1. In the next section we
introduce a set of approximate IVPs corresponding to IVP
(3)-(4) we use in Step 2, and show uniform convergence of
the scheme, as required in Step 2 and Step 4, respectively.

IV. A PARAMETER ESTIMATION METHOD AND ITS

THEORETICAL CONVERGENCE

Throughout this section we will use the notation[t]h =
[t/h]h, where [·] is the greatest integer part function. The
graph of the function[t]h can be seen in Figure 1.
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Fig. 1. Graph of[t]h

It is easy to check that

t− h < [t]h ≤ t, t ∈ R, h > 0, (5)

therefore[t]h → t ash → 0+, uniformly in t. A fractional
part of a real numberx is denoted by{x} = x− [x].

Motivated by our earlier works [12]–[17], we now consider
the approximating equation

ẏh,N (t)

= f
(

[t]h, yh,N([t]h), yh,N([t]h − σ([t]h, yh,N([t]h), λN )),

ẏh,N([t]h − τ([t]h, yh,N([t]h), ξN )), θN

)

(6)

for t ∈ [0, T ], with the initial condition

yh,N (t) = ϕN (t), t ∈ [−r, 0]. (7)

A solution of IVP (6)-(7) is a continuous function, satistying
(6) for all t ≥ 0 except att = kh, k = 0, 1, . . .. It is easy
to see thatẏh,N is constant on the intervals[kh, (k + 1)h),
thereforeyh,N is a piecewise-linear continuous function for
t ≥ 0. Integrating (6) fromkh to t, wheret ∈ [kh, (k+1)h),
and then taking a limit ast → (k + 1)h− it is easy to
obtain the following recursive formula for the computation
of the solution of IVP (6)-(7): Leta(k) = yh,N (kh) and
b(k) = ẏh,N(kh−). Then

σk = σ(kh, a(k), λN )

τk = τ(kh, a(k), ξN )

uk = a
(

k −
[σk

h

]

− 1
){σk

h

}

+a
(

k −
[σk

h

])(

1 −
{σk

h

})

vk = b
(

k −
[τk
h

]

− 1
){τk

h

}

+b
(

k −
[τk
h

])(

1 −
{τk
h

})

b(k + 1) = f(kh, a(k), uk, vk, θN )

a(k + 1) = a(k) + hb(k + 1)

for k = 0, 1, . . . , [T/h] will define the sequencea(k)
explicitly.

Next we prove our main result about the convergence of
this approximation method.



Theorem 1: Assume (H1)–(H3), and that IVP (3)-(4) has
a unique Lipschitz continuous solution,x(t), on [−r, T ]. Let
γN = (ϕN , λN , ξN , θN ) ∈ Γ be such that|γ− γN |Γ → 0 as
N → ∞. Then the solution,yh,N , of IVP (6)-(7) converges
uniformly on [0, T ] to the solution,x, of IVP (3)-(4) ash→
0+ andN → ∞, i.e.,

lim
h→0+

N→∞

max
0≤t≤T

|x(t) − yh,N(t)| = 0. (8)

Proof: DefineM1 ≡ max{|λ|Λ, |ξ|Ξ, |θ|Θ,max{|x(t)| :
t ∈ [−r, T ]}}+ ε for someε > 0. We assume, without loss
of generality, thatN is large enough that|ϕN − ϕ|C < ε,
|λN − λ|Λ < ε, |ξN − ξ|Ξ < ε, and|θN − θ|Θ < ε. Let 0 <
αh,N ≤ T be the largest number such that|yh,N(t)| < M1

for t ∈ [0, αh,N). (αh,N is well-defined since|ϕN (0)| < M1

by our assumptions.) Substracting (6) from (3) and applying
(H1) with L1 = L1(M1) we get

|ẋ(t) − ẏh,N(t)|

=
∣

∣

∣
f
(

t, x(t), x(t − σ(t, x(t), λ)),

ẋ(t− τ(t, x(t), ξ)), θ
)

− f
(

[t]h, yh,N([t]h),

yh,N([t]h − σ([t]h, yh,N([t]h), λN ),

ẏh,N([t]h − τ([t]h, yh,N([t]h), ξN )), θN

)
∣

∣

∣

≤ L1

(

h+ |x(t) − yh,N([t]h)| + |x(t− σ(t, x(t), λ))

−yh,N([t]h − σ([t]h, yh,N([t]h), λN ))|

+|θ − θN |θ

)

+ L2|ẋ(t− τ(t, x(t), ξ))

−ẏh,N([t]h − τ([t]h, yh,N ([t]h), ξN ))|. (9)

Next we will estimate the terms on the right-hand side of (9)
separately. Introduce the notationwh,N (t) := max{|x(s) −
yh,N(s)| : −r ≤ s ≤ t}. Then (5) and Lemma 1 yield

|x(t) − yh,N([t]h)|

≤ |x(t) − x([t]h)| + |x([t]h) − yh,N([t]h)|

≤ M2h+ wh,N (t). (10)

We have assumed that|λ − λN |Λ < ε and |ξ − ξN |Ξ < ε,
therefore|λN |Λ ≤M1 and |ξN |Ξ ≤M1. Let L3 = L3(M1)
andL4 = L4(M1) the Lipschitz constants from (H2). Hence
(H2) (ii), (5), Lemma 1 and the monotonicity ofwh,N yield

|x(t− σ(t, x(t), λ)) − yh,N([t]h − σ([t]h, yh,N([t]), λN ))|

≤ |x(t− σ(t, x(t), λ)) − x([t]h − σ([t]h, yh,N ([t]), λN ))|

+ |x([t]h − σ([t]h, yh,N([t]), λN ))

−yh,N([t]h − σ([t]h, yh,N([t]), λN ))|

≤ M2

(

h+ |σ(t, x(t), λ) − σ([t]h, yh,N([t]h), λN )|
)

+wh,N([t]h − σ([t]h, yh,N([t]), λN ))

≤ M2

(

h+ L3h+ L3|x(t) − yh,N([t]h)|

+L3|λ− λN |Λ

)

+ wh,N (t)

≤ M2

(

(1 + L3 + L3M2)h+ L3wh,N (t)

+L3|λ− λN |Λ

)

+ wh,N (t) (11)

for t ∈ [0, αh,N ].
Introduce zh,N(t) = ess sup{|ẋ(s) − ẏh,N(s)| : s ∈

[−r, t]}. Then, similarly to (11), it is easy to obtain

|ẋ(t− τ(t, x(t), ξ)) − ẏh,N([t]h − τ([t]h, yh,N([t]), ξN ))|

≤ M3

(

h+ L4h+ L4M2h+ L4wh,N (t) + L4|ξ − ξN |Ξ

)

+zh,N(t− r0) (12)

for a.e. t ∈ [0, αh,N ]. Here we also used thatr0 ≤
τ([t]h, yh,N([t]h), ξN ) for t ∈ [0, αh,N ] by (H2), andzh,N

is monotone increasing.
Combining (9), (10), (11) and (12) we get

|ẋ(t)− ẏh,N([t])| ≤ gh,N +K1wh,N (t) +L2zh,N(t− r0)
(13)

for a.e. t ∈ [0, α], wheregh,N = L1(1 + 2M2 + M2L3 +
M2

2L3)h + L2M3(1 + L4 + L4M4)h + L1|θ − θN |Θ +
L1M2L3|λ− λN |Λ +L2M3L4|ξ − ξN |Ξ andK1 = L1(2 +
M2L3) + L2M3L4. Since wh,N and zh,N are monotone
increasing, (13) implies

|ẋ(s)− ẏh,N ([s])| ≤ gh,N +K1wh,N (t) +L2zh,N(t− r0)

for a.e. 0 ≤ s ≤ t ≤ αh,N . On the other hand|ẋ(s) −
ẏh,N([s])| ≤ |ϕ− ϕN |W 1,∞ for a.e.s ∈ [−r, 0]. Therefore

zh,N(t) ≤gh,N+|ϕ−ϕN |W 1,∞+K1wh,N (t)+L2zh,N(t−r0)

holds for all t ∈ [0, αh,N ]. Then Lemma 2 implies

zh,N (t) ≤ K2(gh,N + |ϕ− ϕN |W 1,∞) +K3wh,N (t), (14)

for t ∈ [0, αh,N ], whereK2 = 1 + L2 + · · · + Lm
2 , K3 =

K1(1 + L2 + · · · + Lm−1
2 ) + Lm

2 andm = [α/r0].
Integrating (3) and (6) from0 to t and substracting the

two equations, and using estimates (9), (10), (11), (12) and
(14) we get fort ∈ [0, αh,N ]

|x(t) − yh,N(t)|

≤ |ϕ(0) − ϕN (0)|

+

∫ t

0

∣

∣

∣
f
(

s, x(s), x(s − σ(s, x(s), λ)),

ẋ(s− τ(s, x(s), ξ)), θ
)

− f
(

[s]h, yh,N([s]h),

yh,N([s]h − σ([s]h, yh,N([s]h), λN ),

ẏh,N([s]h − τ([s]h, yh,N([s]h), ξN )), θN

)
∣

∣

∣
ds

≤ |ϕ− ϕN |W 1,∞ + αgh,N +K1

∫ t

0

wh,N (s) ds

+L2

∫ t

0

zh,N(s− r0) ds

≤ Gh,N +K4

∫ t

0

wh,N (s) ds, (15)

whereGh,N = |ϕ−ϕN |W 1,∞ +αgh,N +L2K2(gh,N + |ϕ−
ϕN |W 1,∞)α andK4 = K1+L2K3. Since|x(t)−yh,N (t)| ≤
Gh,N for t ∈ [−r, 0], (15) implies

wh,N (t) ≤ Gh,N +K4

∫ t

0

wh,N (s) ds, t ∈ [0, αh,N ].



Hence Gronwall’s inequality yields

wh,N (t) ≤ Gh,Ne
K4α, t ∈ [0, αh,N ].

Clearly, Gh,N → 0 as h → 0+, N → ∞, hence
max{|x(s) − yh,N (s)| : −r ≤ s ≤ αh,N} → 0 ash → 0+,
N → ∞. Consequentlyαh,N = T for small enoughh and
large enoughN , and the statement of the theorem follows.

V. NUMERICAL EXAMPLES

In this section we present some numerical examples to
illustrate our identification method. The general method is
the following: consider an IVP with unknown parameters.
If the parameters are infinite dimensional, use linear spline
approximation of the parameters. Then, for a fixed small
h > 0, consider IVP (6)-(7), and solve the corresponding
finite dimensional least-square minimization problem,Ph,N

(see Step 3 in Section 2). Ifh is small andN is large,
use the solution ofPh,N as an approximate solution of the
identification method.

To solvePh,N , we used a nonlinear least square mini-
mization code, based on a secant method with Dennis-Gay-
Welsch update, combined with a trust region technique. See
Section 10.3 in [6] for detailed description of this method.

Example 1: Consider the SD-NFDE

ẋ(t) = ẋ

(

t−
t2

t2 + 4
|x(t)| − 1

)

+ θ(t), t ∈ [0, 1], (16)

and the associated initial condition

x(t) =
1

4
t2 + 1, t ≤ 0. (17)

In this example the unknown parameter is the functionθ(t)
in the right-hand-side of (16). It is easy to check that the
solution of IVP (16)-(17), corresponding tōθ(t) = 1

8
t2 + 1

2

is x(t) = 1

4
t2+1. We used this solution to generate measure-

mentsXi = x(ti) at ti = 0.1i, i = 0, . . . , 10, and considered
a 6-dimensional linear spline approximation ofθ on [0, 1].
Figure 2 displays the first 3 steps of the numerical solution of
the corresponding finite dimensional minimization problem
P0.05,6 (the discretization steph = 0.05) starting from the
constant initial parameter valueθ0(t) = 1. On the right
hand side of Figure 2 the first three iterates of the finite
dimensional minimization method and the true parameter
value (solid line) can be seen. The figure shows that the
iterates converge to the “true” parameter valueθ̄(t). On the
left the measurements (circles) and the numerical solutions
of IVP (16)-(17) corresponding to these parameter values are
plotted.

Example 2: Consider again the SD-NFDE investigated in
Example 1, where the time dependent coefficientξ of the
state-dependent delay function is a parameter to be identified:

ẋ(t) = ẋ
(

t− ξ(t)|x(t)| − 1
)

+
1

8
t2 +

1

2
, t ∈ [0, 1]. (18)
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Fig. 2. Estimation ofθ(t): N = 6, h = 0.05

We associate initial condition (17) to the equation. The
solution of IVP (18)-(17) corresponding tōξ(t) = t2

t2+4

equals to that of the previous example, so we use the same
measurements here. In this numerical run we employ an
11-dimensional spline approximation ofξ with h = 0.05.
Figure 3 shows the first four iterates of the solution of the
corresponding finite dimensional minimization problem. We
can see that the fourth iterate ofξ(t) is close to the “true”
parameter̄ξ(t).
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Fig. 3. Estimation ofξ(t): N = 11, h = 0.05

Example 3: Consider again the SD-NFDE investigated in
Example 1, where this time an other part of the delay, a
constantξ ∈ R in (19) is the unknown parameter:

ẋ(t) = ẋ

(

t−
t2

t2 + 4
|x(t)| − ξ

)

+
1

8
t2 +

1

2
, t ∈ [0, 1].

(19)
The associated initial condition is again (17). The solution of
(19) corresponding tōξ = 1 is again to that of Example 1,
so we use the same measurements. The parameter is one-
dimensional, so now we discretize only the equation. The
first 5 steps of the iterates ofξ starting fromξ0 = 5 initial
guess and the corresponding least-square cost are listed in
Table I for step-sizesh = 0.1, 0.05 and0.01, respectively. In
Figure 4 the measurements and the solutions corresponding
to the first 4 parameter values are plotted. We can see good
recovery of the parameter.

Example 4: Consider again the SD-NFDE investigated in
the previous examples:

ẋ(t) = ẋ

(

t−
t2

t2 + 4
|x(t)| − 1

)

+
1

8
t2 +

1

2
, t ∈ [0, 1],

(20)
with unknown initial condition of the form

x(t) =

{

ϕ(t), t ∈ [−r, 0]
ϕ(−r), t < −r.

(21)



TABLE I

h = 0.1 h = 0.05 h = 0.01
i Jh ξi Jh ξi Jh ξi

0 7.731720 5.0000 7.635218 5.0000 6.778048 5.0000
1 0.348809 1.8161 0.343652 1.8344 0.301280 1.8443
2 0.026832 1.1915 0.025915 1.2116 0.022147 1.2254
3 0.000475 0.9837 0.000432 1.0063 0.000347 1.0240
4 0.000001 0.9526 0.000000 0.9765 0.000000 0.9958
5 0.000000 0.9518 0.000000 0.9759 0.000000 0.9952
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Fig. 4. Estimation ofξ: h = 0.05

As we have seen before, the solution corresponding to initial
functionϕ̄(t) = 1

4
t2+1 with r = 1 equals tox(t) = 1

4
t2+1.

We use again the measurements of Example 1.
The main difficulty in this example is that the exact initial

interval, i.e.,−r̄ = min{t − t2

t2+4
|x(t)| − 1 : t ∈ [0, 1]}

depends on the solution. Our numerical results show that if
r is selected large enough, then at the first few node points
the initial guess of the spline approximation of the initial
function is not updated during the iteration. Therefore we
pick “large enoughr”, execute the minimization routine,
and locate the last node point where the initial guess for
the spline is not modified. Then changing−r to this value
and repeating the run we can find a good approximation of
−r and the initial function. For similar examples and more
detailed discussions we refer the reader to [14] and [17].

In Figure 4 we plotted the first 3 steps of the numerical
solution of the finite dimensional minimization problem
corresponding to anN = 5 dimensional approximation of
the initial function on the initial interval[−1.5, 0] and the
discretization steph = 0.05. The second iteration already
shows a really good recovery of the initial function. This
run suggests that̄r < 1.5.
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Fig. 5. Estimation ofϕ(t): N = 5, h = 0.05
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