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Identification of Parameters in Neutral Functional Differential
Equations with State-Dependent Delays

Ferenc Hartung and Janos Turi

Abstract— We introduce a parameter identification algorithm Note that EPCAs were used first in [9] to obtain numer-
and establish its theoretical convergence on initial valug@rob-  jcal approximation schemes and to prove the convergence
lems governed by neutral functional differential equatiors with of the approximation method for linear delay and neutral
state-dependent delays. The discretization of the differdial diff tial fi ith tant del d laterlit
equation is based on an Euler-type approximation method ifrerentia equa_lons with constant delays, ar_1 ae_r [
using equations with piecewise constant arguments. Numeal ~ and [15] for nonlinear delay and neutral equations withestat

examples are included. dependent delays.

. INTRODUCTION

In this paper, making use of a general framework for 1. A CLASS OFSD-NFDEs
parameter identification in distributed parameter systésas . :
e.g., [1], [2], [3], [20], and the references therein), wadst Consider the nonlinear SD-NFDE
convergence properties of numerical schemes producing apy) — f(¢, x(t), z(t — o (t, 2(t), \)), &(t — 7(t, 2(1), €)), 6),
proximate solutions of parameter estimation problems for a 3)
class of neutral functional differential equations witltet ¢or + > (. and the associated initial condition
dependent delays (SD-NFDESs) of the form

. . z(t) = p(t), t e [-r0]. 4
#(t) = f(t.2(2).2(t — olt.2(1). 5(t — 7(t.2(1). D) 0= 0 @
Existence, uniqueness and numerical approximations af solVe assume throughout the paper thaE and® are normed

tions for such equations were considered in [4], [7], [SJJjL n€ar spaces, where the norms are denoted by, | - |=
and [19] and the references therein. Parameter estimatiBRd| - le, respectively.

problems were studied in [14] for equations of the form A fixed norm onR" is denoted by| - |. The Banach-
space of continuous real-valued functions defined-en 0]

/
(x(t)Jrq(t)x(t_T(t,x(t)))) :f(ﬁ,m(ﬁ),m(t_g(t7x(t)))2 with the norm[¢|c = max{|1)(s)|: s € [~r,0]} will be
(2) denoted byC. The Banach-space of absolutely continuous

(the so-called implicit neutral case). Note that (1) représ functions on[—r, 0] is denoted by¥">, where[y|yy1. =
a more general class of SD-NFDEs than (2). max{|¢|c, esssup{[¢(s)[: s € [, 0]}}.

In this paper, extending and refining our earlier results We will assume
(see [17] for retarded equations with state-dependenydelgH1) f € C([0,T] x R" x R x R"* x ©; R") is locally
and [12]-[14] for NFDEs with constant, time- and state- Lipschitz continuous in its first, second, third and fifth
dependent delays), we define a parameter estimation method arguments, and globally Lipschitz continuous in its
using an approximation scheme based on equations with fourth argument, i.e., there exisfs, > 0 and for every
piecewise-constant arguments (EPCASs), show its theaietic M > 0 there existsL; = Li(M) > 0 such that
convergence, and study its applicability on numerical exam | ¢(¢ z vy, 2,0) — f(f,2,7,%,0)| < L, (|t — ]+ |z -
ples. _ _
The remaining part of the paper is organized as follows: In ~ Z| + [y — 7 + 0 — 9|(—)) + Lao|z — 2], for ¢,¢ € [0, T],
Section 2 we specify the class SD-NFDEs we will study and  z,Z,y,7, 2,Z € R™, 0,0 € © such thatz|, |z, |yl |7l
obtain some basic properties of the solutions. In Section 3 |0|e, |fle < M;
we briefly recall the general identification framework usei2) 7,0 € C([0,7] x R™; R) are such that
in the current study. In Section 4 we introduce a simple (i) there existr > 0 andro > 0 such that
EPCA-based numerical approximation scheme, and discuss
the key step of the general identification procedure, namely 0<o(t,z,\)<r and 0<ro <7(t,z,§) <r
Lhe convergence of the apprquate proplem under a certaln fort €[0,T], s €R", A€ A, € € =;

ouble limiting process. Section 5 contains a few numerical . ) . ! . .

(i) o andr are locally Lipschitz continuous in their

examples. . .
P all arguments, i.e., for every/ > 0 there exists
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(1]

M €A, &€ € Zsuch that|z|, |Z| < M, |M,, forae.t €[0,a]. Therefore there exist& > 0 such that

Pa s M et s M (o 1E0] < K + Loesssup{|i(s)]: s € [=r.t — rol},
(H3) ¢ € Wb, (i.e., ¢ is Lipschitz continuous), and its _ )
derivative ¢ is Lipschitz continuous orf—r,0], i.e., which, using (H3) and the method of steps, yields that there

there existsLs > 0 such thatig(¢) — ¢(f)| < Ls|t — 7] exists My >0 SL_Jch tha.t|:z':(t)| < My for a.e.t € 0, o,
for a.e.t € [—r,0). hencez is Lipschitz continuous. This proves the first part of
this lemma.

By a solution of IVP (3)-(4) on[— we mean a . . .
y (3)-(4) [=r.e] To prove the second inequality, consider

continuous functionz, which is almost everywhere (a.e.)
differentiable and satisfies (3) for a.e.c [0,«], and (4) |2(t) — z(?)|

for el e ercofhe = (G — ol w(0),0), 8t~ 7(t,2(1),€)).0)
n (3)-(4) we considety = as parameters of the . T .
IVP, Sin)d(d)efinQ = W?zc X(K7>< ,E&x é) aspthe space of the —f (& 2(t), 2t — ot 2(t), N), #(t — (¢, 2(1),€)), 0)]

parameters with the noriy|r = @l + |Aa + €z + < Lallt =+ |2(t) — 2(2)]
|0|le. We assume that these parameters (or some of them)  +|z(t — o(t, z(t),\)) — 2(t — o (¢, z(£), \))])

are unknown, but valuegXy, X1, ..., X;) of the solution, +Loli(t — 7(t,2(t),8)) — &(E — 7(F, 2(£),€))|
z(t), are available via measurements at discrete time values - -
(to,t1,...,1;). The goal is to find the parameter value, which = La(lt — t|7+ Malt — 1] -
minimizes the least squares fit-to-data criterion +Malt —t| + Malo(t,z(t),A) — o(t, z(t), M)
FLold(t — 7(t,2(t),€)) — &(t — 7(t, 2(2),8))|.
v = |atsy) — Xl Fort € [0,ro] it follows t — 7(¢, z(t), &) andi — (£, 2(f), €)

belong to[—r, 0], therefore, using (H3), we get
l#(t) —&(t)] < Kolt =t + LaLs|t — 1]

+L2L5|T(t7 I(t)v g) - T({a 517(57 §)|

Since by (H2) (i)t — 7(t,z(¢),\) < 0 for ¢t € [0,7], it (Ko + LsK1)|t — 7|, a.e.t,fe0,r,
follows that on this interval (3) is equivalent to the state- )
dependent delay differential equation where Ko = Lu(1 +2Ms + MyLs + M3 L;) and K, =

Lo(1 + Ly + LyMs). Similarly, for a.e.t,t € [rg, 2ro] we

l’(t) = f(t7 J}(t), .Z’(t - U(t7 .I‘(t), )‘))a (‘D(t - T(t7 l‘(t), 5))) 9) get
A result in [18] implies the existence of a unique solution l&(t) — 2(f)| < (Ko + KoKy + Ls K|t — 1.
of (3) on [0,7¢] (or on a shorter interval). Repeating the
argument successively on intervdls-, (k + 1)ro] (k € N)
we get that there exista > 0 such that IVP (3)-(4) has
a unique solutionz on [0,a]. Of course, if all Lipschitz

constants in (H1)—-(H2) are global, then it is easy to argue \we will use the following elementary estimate in the

that the unique solution exists on the whole intel¥BII'].  sequel. In the proof of the lemma and throughout this paper
Lemma 1 shows that both and are Lipschitz continuous [.] denotes the greatest integer function.

on [0, .

where v belongs to an admissible sét contained in the
parameter spacE. (Denote this problem bP).

IN

Therefore, repeating these steps finitely many times, we get
that there existsV/3 > 0 satisfying the second part of the
statement. m

Lemma 2: Let a,b > 0, andg : [0,a] — [0,00) and
Lemma 1: Assume (H1)-(H3), and let = (¢,A,{,0) €  w: [-r5,a] — [0,00) be monotone increasing functions
I' be fixed, andz be a solution of (3) corresponding tp  satisfying

defined on a finite interveD, «]. Then there exist constants < b
My = Ms(a) > 0 and M3 = Ms(a) > 0 such that u(t) <a+g(t) +bult—ro),  te[0af
2(t) — 2(B) < Malt 7, t.F€ [-ral, andu(0) < a. Then
and u(t) < (a+gt))A+b+b2+---+b™ " H+b™a, te€]0,q],
wherem = [a/r].

{ — 1 < — 1 ettel- . . .
(t) = 2(0)] < Msft — 1], aet,te[-ral Proof: The assumptions imply

Proof: Let M7 = max{|z(t)] : t € [0,¢]}, L; =
Li(M;) (i = 1,3,4) be the Lipschitz constants from (H1) u(t) <a+g(t)+bu(0) <a+g(t)+ba,  t€ 0,7

and (H2), respectively. Assumption (H1) implies Therefore, using the monotonicity gfandu, we get
|2 (t)] u(t) < a+g(t)+bu(ro)
< S a(t), a(t —o(t,x(t),N), 2 (t — 7(t, 2(2),€)),0) < a+g(t)+bla+g(ro) + ba)
—£(0,0,0,0,0)| + |£(0,0,0,0, 9)| < (a+g@)1+Db)+ ba, t € [ro, 2ro].
< La(t+[a()] + |2t — ot 2(t), A)| + 10le) Then the lemma follows by induction. [

Lol (t —7(t,2(1),6))| +1(0,0,0,0,0)]



I1l. A GENERAL PARAMETER ESTIMATION METHOD IV. A PARAMETER ESTIMATION METHOD AND ITS

. . . THEORETICAL CONVERGENCE
In this section we briefly recall a general method fre-

quently used to identify parameters in various classes of Throughout this section we will use the notatipify, =
differential equations (see, e.g., [1], [3], [20], and ajsa]- [t/hlh, where[] is the greatest integer part function. The
[17]). We will apply this framework for our IVP (3)-(4) in graph of the functiorit], can be seen in Figure 1.

the next sections. oh
The general method consists of the following steps: sh —
Step 1) First take finite dimensional approximations of the an o
parametersyy, (i.e.,yv € Ay C 'y C T, dimT'y < o0, . —
YN — v asN — o0). o o
Step 2) Consider a sequence of approximate IVPs corre- Z ._O._O
sponding to a discretization of IVP (3)-(4) for some fixed W e

parameteryy € I'y with solutionsyas v (-;yn) satisfying ;
ymN(t,yN) — xz(t,y) as M, N — oo, uniformly on
compact time intervals, angly € Ay. _
Step 3) Define the least square minimization problems It is easy to check that
(PMyN):.for egghN,M:1,2,..., i.e.,finc!yM,NEAA( c t—h<[tlh <t teR, h>0, (5)
I' v, which minimizes the least squares fit-to-data criterion . _ _
therefore[t], — t ash — 0+, uniformly in ¢. A fractional

part of a real numbet is denoted by{z} = =z — [z].

=2h -h 0 h 2h 3n 4h 5h 6h
Fig. 1. Graph offt],

l
Iun(w) =)y (tiyw) — Xl YN € An.
; Motivated by our earlier works [12]-[17], we now consider

. L . the approximating equation
Often Ay is the projection ofA to I'y, and we restrict our PP geq

discussion to this case. Un,n(t)

Step_4) Assumln_g thah is a compact subset &f, a_md the _ f([t]h, un n (81 v ([n — o ([tn, ynn ([Er), An).
approximate solutionyas n(¢;vn), depends continuously
on the parameteryy, we get, that/y; y(-) is continuous Un.n ([t]n *T([t]h7yh,N([t]h)7§N)>,9N) (6)

for each M, N. Hence the finite dimensional minimization ) o N
problems, Py, v, have a solutiong,, . Sincea n € A, for t € [0, T, with the initial condition
the sequence*yM{v (M,N_: _1,_2,;. .) has a convergent unn(t) = on (1), te[-r0l. @)
subsequence, says; n,, with limit 7 € T". ) ) . _ o
Step 5) It follows from Step 2 thafys, v (ar, n,) — A solution of IVP (6)-(7) is a continuous function, satistyi
J(3) asj — oco. Lety € A be fixed, and letyy — » (6) for al t >0 exceptatt = kh, k =0,1,.... Itis easy
satisfying Step 1. Then, in particulayy. — v asj — co. (O Sée thay, v is constant on the intervalgh, (k + 1)h),
Using that¥as. . is a solution ofPy;, J\; Step 2 implies thereforey,, v is a piecewise-linear continuous function for
Y Y t > 0. Integrating (6) fromkh to t, wheret € [kh, (k+1)h),
J(¥) = lim Jag, N, (Ya;,n;) < lim Jag, n, (vv,) = J(y),  and then taking a limit ag — (k + 1)h— it is easy to
e e obtain the following recursive formula for the computation
thereforey is the solution of the minimization problefd.  of the solution of IVP (6)-(7): Letu(k) = yn n(kh) and
b(k) = yh_’N(khf). Then
In practice we take “large enougl®” and A/, and use the or = olkh,a(k), \y)
solution of Py, x as an approximate solution ¢?. Note

that Step 4 and 5 yield that the limit of any convergent e = T(kh’a(g’ &n) or

subsequence ofy, v is a solution ofP (with the same cost). UL = a(k - [7} - 1) { 7}

It is possible that the minimizer of () is not unique (see, Ok o

e.g., Example 5.4 in [16]). For results on identifiability of "H‘(k - {TD (1 - {f})

parameters, i.e., the uniqueness of the parameter mimigizi o = b(k B [E} B 1) {E}

the cost functionJ(y) (for simpler classes of delay equa- h h

tions) is discussed e.g., in [2] and [21]. +b(k: _ {T_’CD (1 _ {T_k})
In our examples, we will use linear spline approximation h h

to discretize the parameters, ¢ and 6, in the case of bk+1) = f(kh,a(k), ur,ve,On)

nonconstant functions, in Step 1. In the next section we  a(k+1) = a(k)+ hb(k+1)

introduce a set of approximate IVPs corresponding to WVior £ = 0,1 [T'/h] will define the sequence(k)
(3)-(4) we use in Step 2, and show uniform convergence qf, pjicity SRR

the scheme, as required in Step 2 and Step 4, respectively. Ngy \ve prove our main result about the convergence of
this approximation method.



Theorem 1: Assume (H1)-(H3), and that IVP (3)-(4) hasfor t € [0, ap, n].
a unique Lipschitz continuous solutian(t), on[—r, T]. Let Introduce z;, n(t) = esssup{|Z(s) — yn,n(s)| : s €
v = (N, AN, &N, 0n) € T be such thafy —yn|r — 0as  [—r,¢]}. Then, similarly to (11), it is easy to obtain
N — oco. Then the solutionyy, n, of IVP (6)-(7) converges | .
uniformly on [0, 7] to the solutionz, of IVP (3)-(4) ash —  12(t = 7(t,2(),©)) = v ([t — 7([t]n, ynn ([H]), €x))

0+ and N — oo, i.e., < Mj; (h + Lyh + LyMsh + Lywp, n () + La|€ — §N|E)
’;]131% Orga<xT |z(t) — yn,n(t)] = 0. (8) +zn, Nt —10) (12)
Proof: DefineM; = max{|A|x, |[¢|z, |0]o, max{|z(t)] : for a.e.t € [0,apn]. Here we also used thaty <

t € [—r, T]}} + ¢ for somee > 0. We assume, without loss T([t]n, yn.n([t]n),€n) for ¢ € [0, an n] by (H2), andz, v
of generality, thatN is large enough thatpy — | < ¢, IS monotone increasing.
IAv —Ala <&, |[En — €|z < e, and |0y — flo < e. Let0 < Combining (9), (10), (11) and (12) we get

ap,n < T be the largest number such tHgt%N(t)| < M, 18(8) = gnn ()] < grn + Krwn n(£) + Lozn (£ — 70)

fort € [0, an,n). (an,n is well-defined sinceypy (0)| < M ’ (13)
by our assumptions.) Substracting (6) from (3) and applymﬂJr ae.t € [0,a], wheregy x = Li(1 + 2My + MyLs +
(H1) with Ly = Ly (My) we get M3ZLs)h + LoMs(1 + Ly + LyMs)h + L1|0 — On]e +
|Z(t) — gn, N (1)] L1M2L3|)\ —An|A + LoMsLy|é — Ex|= and Ky = Ly (2 +
MsL3) + LaM3Ly. Since wy n and z, y are monotone
}f(t’x( ot —o(t,z(t), 1)), increasing, (13) implies

ot —7(t,2(t),8)), ) f([t]h,yh ~([tlh), 1i(s) — n.n ()] < gnw + Kywpn (8) + Loz n(t — 70)
yn,N ([tln = o ([t]n, yn v ([Hn), A for a.e.0 < s <t < ajn. On the other handi(s) —
In,N ([t — T([t]n, yn,n ([tR), € )) )‘ un.n([s])] < |¢ — on|wr~ for a.e.s € [r,0]. Therefore

< Iy (h +lz(t) =y ([n)] + |zt — ot z(t),N)  2rN(E) Sgnn+lo—on|wre+EKiwp,n () + Loz, (t=T0)

=y~ ([tln — o ([tln, yn,n ([t]n), AN))] holds for allt € [0, a; x]. Then Lemma 2 implies
HO = Onlo ) + Lala(t — 7(t,2(t),8)) 2w (1) < Ka(gnn + | — onlwie) + Kzwnn (1), (14)
=0, N ([t — T([ths yn, v ([ER), EN))]- 9 fors e [0, n], Where Ky = 1+ Lo+ -+ + LI, K3 =
Next we will estimate the terms on the right-hand side of (91 (1 + Lo + - -+ + L5y~ ") + L* andm = [a/ro].
separately. Introduce the notatian,  (¢) := max{|z(s) — Integrating (3) and (6) fromd to ¢ and substracting the
yn,n(s)|: —r < s < t}. Then (5) and Lemma 1 yield two equations, and using estimates (9), (10), (11), (12) and

() — ynn ([E])] (14) we get fort € [0, ap, ]

< () = 2({tln)] + |2 (1) — ya v ()] [#(t) = yh N<f>|

< Moh+ wpn(t). (10) < ©n(0)]
We have assumed that — Ay|a < € and € — x|z < &, / ’f s,x(s),x(s — o(s,z(s), ),
therefore|)\N|A < M, and |§N|E < M. Let L3 = L3(M1)
andL, = L4(M;) the Lipschitz constants from (H2). Hence (s —7(s,2(s),5)), ) ( S]h, YN ([s]n),

[
(H2) (i), (5), Lemma 1 and the monotonicity ey,  yield yn.n ([s]n — o ([s)h, ynv ([s]n), AN
)

2t = o (t,2(8), 1) = v ([ = o ([, o (2D, Aw)) s = ([, e (sn), n) eN)\ds

<zt —o(t,z(t), A) — z([tlh — o ([t]h, yn,n ([E]) An))] ¢
([t — o ([ v (1), An)) < lp—enlwis +agny + K1 /O win(s) ds
~yn ([t — o ([t yn (1), Ax))] T

< My (ot lo(t,2(0),3) — o[t (1), 2] L |l =)

twn ([ — o ([, v (1), An) < Gant K / Cin(s) ds, (15)
< My (h+ Lah + Lale(t) = g ([t0) ’

whereGy v = ¢ —pn|wi= +agn N+ LaKa(gnn +[p—

+Ls|A - ANIA) + wa,N (1) o lwi)a andKy = K1 + Lo K. Sincefz(t) —yn,n (1) <

- M2((1 L+ LsMa)h + Lswn(t) G, for t € [-r,0], (15) implies

t
+L3|)\ — )\N|A) + ’LU}L,N(t) (11) wh,N(t) < Gh,N + K4/O wh,N(S) ds, te€ [O’ ahJV]'



x(t) o)

Hence Gronwall’'s inequality yields 18

x - Step 0 1 % %

Kaia 1.6 +  Step 1 X x ~
wh’N(t) < Gh.ne , telo, Oéh,N]- 14t © mehs. X ’ 0.8 . EEES

Clearly, G,y — 0 ash — 04+, N — oo, hence 12 erere* ] ) é

x * @ X ) . %
max{[z(s) — ynn(s): =1 <5 < apn} — 0ash — 04,  preieserers TP
N — oo. Consequentlyy;, y = T for small enough and 08— 705 08 %% o2 01 05 o8
large enoughV, and the statement of the theorem follows.

u Fig. 2. Estimation o®(¢): N =6, h = 0.05
V. NUMERICAL EXAMPLES We associate initial condition (17) to the equation. The

. . — o +2
In this section we present some numerical examples gplution of IVP (18)-(17) corresponding (t) = zy

illustrate our identification method. The general method i§duals to that of the previous example, so we use the same

the following: consider an IVP with unknown parameters.me"’lsurements here. In this numerical run we employ an

If the parameters are infinite dimensional, use linear sp"nl_l—dlmensmnal splmg approximation gfwith 7 — 0.05.
approximation of the parameters. Then, for a fixed smalr'gure 3 Sh_OWS_ the f'_rSt fou_r |teratc_es_ OT thg solution of the
h > 0, consider IVP (6)-(7), and solve the correspondiné:orreSpond'ng finite d|m_enS|0naI m|_n|m|zat|on probll‘em.,}Ne
finite dimensional least-square minimization problefy,y ~ can See that the fourth iterate 6ft) is close to the “true
(see Step 3 in Section 2). K is small andN is large, Parameteg(t).
use the solution of?, x as an approximate solution of the
identification method.

To solve Py, n, we used a nonlinear least square mini-**— sepo

mization code, based on a secant method with Dennis-Ga'?| ' Se> o: e
Step 3 O x*

Welsch update, combined with a trust region technique. S€*| o meas| , o :+"
PICES S o

Section 10.3 in [6] for detailed description of this method. *j#%*"+~
0.9 Xx

X%y
X x X %
xxxxxxx

Example 1: Consider the SD-NFDE %% 02 o4 06 08

Fig. 3. Estimation of(¢): N = 11, h = 0.05

it) = @ (t — ol - 1) Lo, tel0,1], (16)

and the associated initial condition Example 3: Consider again the SD-NFDE investigated in
1 Example 1, where this time an other part of the delay, a
x(t) = ZtQ +1, t <O0. (17) constant € R in (19) is the unknown parameter:

2
In this example the unknown parameter is the functiér) i(t) =i (t _ t—|$(ﬁ)| _ 5) + lt2 + 1, telo,1].
in the right-hand-side of (16). It is easy to check that the 244 8 2 (19)

. ) ing @&(t) = 142 4 1
solution Olf IVP (16)-(17), corresponding t(¢) = 5" + The associated initial condition is again (17). The soluti®

is z(t) = $t*+1. We used this solution to generate measure, ) - .
menix. (1) alt,~ 0141~ 1,.._. 10, and considered (17 TSRO 61 s agan ot of Exampie L
a G-dimensional linear spline approximation 6fon [0, 1. dimensional, so now we discretize dnl thg equation. The
Figure 2 displays the first 3 steps of the numerical solutibn ' y a :

the corresponding finite dimensional minimization probler%'rSt 5 steps of the iterates df starting fromg, = 5 initial

Po.oss (the discretization step = 0.05) starting from the guess and the cprresponding least-square cost are listed in
constant initial parameter valug(t) = 1. On the right Tgble Ifor step-size4 = 0.1, 0.05 and0.01, r_espectwely. In .
hand side of Figure 2 the first three iterates of the finitFIgure 4 the measurements and the solutions corresponding

dimensional minimization method and the true paramet the first 4 parameter values are plotted. We can see good

value (solid line) can be seen. The figure shows that tHECOvey of the parameter.

iterates converge to the “true” parameter vall{¢). On the
left the measurements (circles) and the numerical solstion

of IVP (16)-(17) corresponding to these parameter values ar Example 4: ConS|der. again the SD-NFDE investigated in
plotted. the previous examples:

2

o t 1, 1
Example 2: Consider again the SD-NFDE investigated in (t) =2 <t T4 4|$(t)| B 1) Tttty te [0,1],

Example 1, where the time dependent coefficigrdf the (20)
state-dependent delay function is a parameter to be idahtifi with unknown initial condition of the form

t), te|—r0
i(t) = x'(tff(t)|z(t)| - 1) + %ﬁ + % te[0,1]. (18) z(t) = { ig_)r), ti[_r_ ] (21)



TABLE |

h=0.1
Jn

7.731720
0.348809
0.026832
0.000475
0.000001
0.000000

h =0.05
Jn

7.635218
0.343652
0.025915
0.000432
0.000000
0.000000

h =0.01
Jn

6.778048
0.301280
0.022147
0.000347
0.000000
0.000000

&i
5.0000
1.8161
1.1915
0.9837
0.9526
0.9518

&i
5.0000
1.8344
1.2116
1.0063
0.9765
0.9759

&i
5.0000
1.8443
1.2254
1.0240
0.9958
0.9952

(1]

GO WNEPO|=

(2]

K]
x(t)
15

0.0:9
§L» ; 0+0#90+9
. Y?“Q*Q*************

+9 41
0.5 X o .

Step 0 Xy

Step 1 Xy

Step 2 X

Step 3 Xox iy
O  meas.

[¢] 0.2

X

(5]

0.4 0.6 0.8 1

(6]
(7]

(8]
As we have seen before, the solution corresponding to linitia
function(t) = 3¢ +1 with = 1 equals taz(t) = 31> +1. g
We use again the measurements of Example 1.

The main difficulty in this example is that the exact initial
interval, i.e., —F = min{t — wglae(t) - 1: t € (0,1} 0
depends on the solution. Our numerical results show that if
r is selected large enough, then at the first few node poinkst
the initial guess of the spline approximation of the initial
function is not updated during the iteration. Therefore w¢12]
pick “large enoughr”, execute the minimization routine,
and locate the last node point where the initial guess for
the spline is not modified. Then changing: to this value [13]
and repeating the run we can find a good approximation of
—r and the initial function. For similar examples and more
detailed discussions we refer the reader to [14] and [17]. [14]

In Figure 4 we plotted the first 3 steps of the numerical
solution of the finite dimensional minimization problem(;s
corresponding to anlV = 5 dimensional approximation of
the initial function on the initial interval—1.5,0] and the
discretization stepgh = 0.05. The second iteration already
shows a really good recovery of the initial function. This
run suggests that < 1.5.

Fig. 4. Estimation of: h = 0.05

[16]

[17]

x(® o) [18]
15 2
x-- Step 0
% @ F + Stepl
Wreror@r@xO*® ox® lf’\ﬁ -
X Step 0 1 #* "
* - Stepl
0.5 Step 2 «x x5 [20]
O meas, Lo x X ’
0 woox XX x [0 3 x x x
0 0.2 0.4 0.6 0.8 1-15 -1 -05 0 [21]
Fig. 5. Estimation ofp(t): N =5, h = 0.05
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