
Linearized Stability in Periodi Funtional Di�erentialEquations with State-Dependent DelaysFeren HartungDepartment of Mathematis and Computing, University of Veszpr�emH-8201 Veszpr�em, P.O.Box 158, HungaryABSTRACT: In this paper we study stability of periodi solutions of a lass of nonlinearfuntional di�erential equations (FDEs) with state-dependent delays using the method oflinearization. We show that a periodi solution of the nonlinear FDE is exponentially stable,if the zero solution of an assoiated linear periodi linear homogeneous FDE is exponentiallystable.AMS(MOS) subjet lassi�ation. 34K201. INTRODUCTIONFuntional di�erential equation with state-dependent delays (sd-FDEs) appear frequent-ly in appliations as model equations (see, e.g., Aiello, Freedman & Wu (1992), Arino, Hbid& Bravo del la Parra (1998), Cao, Fan & Gard (1992), and Maha�y, B�elair & Makey(1998), and the study of suh equations is an ative researh area (see the referenes inthis paper). Stability of the solution is one of the most important qualitative property ofa model. There are many papers whih give suÆient onditions for the stability of thetrivial (zero) solution in sd-FDEs (see, e.g., Gy}ori & Hartung (2000), Yoneyama (1987) and(1991)).For nonlinear equations the method of linearization is a standard tool in stability inves-tigations, but for sd-FDEs there are many tehnial problems with it. (See, e.g., Brokate& Colonius (1990), Hartung (1997), Hartung & Turi (1997), and Krishnan (2002).) Lin-earization theorems for obtaining stability of the zero or onstant equilibriums were givenin Cooke & Huang (1996), Hartung & Turi (1995) and (2000) for various lasses of sd-FDEs. In this paper we extend these results for periodi solutions of a lass of nonlinearsd-FDEs (see Theorem 2.5 below). Our results were motivated by Luzyanina, Engelborghs& Rose (2001), where the existene of suh result was onjetured, and extensive numerialinvestigation of stability of onstant and periodi solutions of sd-FDEs was given.For results onerning the existene of a periodi solutions of sd-FDEs we refer theinterested reader to Domoshnitsky & Drakhlin (1997), Magal & Arino (2000), Mallet-Paret,Nussbaum & Paraskevopoulos (1994), and Smith & Kuang (1992).2. MAIN RESULTSConsider the nonlinear state-dependent delay system_x(t) = f(t; x(t); x(t� �(t; xt))); t � 0 (2.1)



with initial ondition x(t) = '(t); t 2 [�r; 0℄: (2.2)Here and later on xt denotes the solution segment funtion, i.e., xt(s) = x(t + s) fors 2 [�r; 0℄. The Banah-spae of ontinuous funtions  : [�r; 0℄! Rn with the supremumnorm k k = maxfj (s)j : s 2 [�r; 0℄g is denoted by C. A losed neighborhood with radius %of a set A in a Banah-spae X is denoted by BX(A; %) = fx 2 X : jx�ajX � % for some a 2Ag. We use j � j for any �xed norm on Rn and for the orresponding indued matrix normon Rn�n , as well. L(C;R) denotes the Banah-spae of bounded linear funtionals on Cwith the norm j � jL(C;R).We assume the following onditions throughout the paper:(H1) f : [0;1)�
1 �
2 ! Rn is ontinuously di�erentiable, where 
1 and 
2 are opensubsets of Rn , and let f be T -periodi, i.e.,f(t; u; v) = f(t+ T; u; v); t � 0; u 2 
1; v 2 
2;(H2) (i) � : [0;1)�
3 ! [0; r℄ is ontinuously di�erentiable, where 
3 is an open subsetof C, and � is T -periodi, i.e.,�(t;  ) = �(t+ T;  ); t � 0;  2 
3;(ii) � is loally Lipshitz-ontinuous in the following sense: for every bounded andlosed subset M of C there exists a onstant L1 = L1(M) � 0 suh thatj�(t;  ) � �(t; ~ )j � L1k � ~ k; t 2 [0; T ℄;  ; ~ 2M;(iii) D2� is loally Lipshitz-ontinuous in the following sense: for every bounded andlosed subset M of C there exists a onstant L2 = L2(M) � 0 suh thatjD2�(t;  )�D2�(t; ~ )jL(C;R) � L2k � ~ k; t 2 [0; T ℄;  ; ~ 2M;Let �x : [�r;1) ! Rn be a T -periodi solution of (2.1). The restrition of �x to theinterval [�r; 0℄ is denoted by �', i.e., �x is the solution of (2.1)-(2.2) orresponding to initialfuntion �'. It is assumed that �' and �x are �xed throughout this paper. Sine �x is asolution of (2.1), the ontinuity of f and � imply that _�x is ontinuous on [0;1), therefore�x is ontinuously di�erentiable on [�r;1), as well.We note that, in general, assumptions (H1){(H2) together with ' 2 C imply the exis-tene, but not the uniqueness of the solution of (2.1)-(2.2). But the stronger assumption�' 2 C1 is suÆient in order the solution �x be unique. (See, e.g., [11℄ or [12℄.) Throughoutthis paper x(t;') will denote any solution of (2.1)-(2.2) orresponding to initial funtion' 2 C.To simplify notation we introdue�(t) � x(t� �(t; xt)) and ��(t) � �x(t� �(t; �xt)):The dependene of � on x is omitted from the notation for simpliity, but it should alwaysbe kept in mind. We de�ne the following sets assoiated to �x:A1 � f�x(t) : t 2 [0; T ℄g; A2 � f��(t) : t 2 [0; T ℄g; and A3 � f�xt : t 2 [0; T ℄g:



Then A1 � Rn , A2 � Rn and A3 � C are ompat subsets of the respetive spaes, sine �xis ontinuous. The sets 
1, 
2 and 
3 are opens subsets of the respetive spaes, thereforethere exist positive onstants %1, %2 and %3 suh thatBRn(A1; %1) � 
1; BRn(A2; %2) � 
2 and BC(A3; %3) � 
3:Sine f is T -periodi and ontinuously di�erentiable with respet to its seond and thirdarguments, there exists a onstant N1 > 0 suh thatjD2f(t; u; v)j � N1 and jD3f(t; u; v)j � N1 (2.3)for t � 0, u 2 BRn(A1; %1), and v 2 BRn(A2; %2).We shall need the following estimate.Lemma 2.1 Assume (H2), and let �x : [�r;1) ! Rn be a ontinuously di�erentiable andT -periodi funtion. There exists a onstant N2 � 1 suh that for any S > 0j�(t)� ��(t)j � N2kxt � �xtk; t 2 [0; S℄for any ontinuous funtion x : [�r;1)! Rn satisfyingxt 2 BC(A3; %3); t 2 [0; S℄: (2.4)Proof Let L1 be the onstant from (H2) (ii) assoiated to the set BC(A3; %3). Thede�nition of � and ��, and the Mean Value Theorem yieldj�(t)� ��(t)j � jx(t� �(t; xt))� �x(t� �(t; xt))j+ j�x(t� �(t; xt))� �x(t� �(t; �xt))j� kxt � �xtk+ k _�xtkj�(t; xt)� �(t; �xt)j;whih proves the statement using (H2) (ii) and N2 � 1 + L1maxfj _�x(t)j : t 2 [0; T ℄g. 2For �x and for any �xed t � 0 we de�ne the linear operator F (t) : C ! Rn byF (t) � D2f(t; �x(t); ��(t)) (0) +D3f(t; �x(t); ��(t)) (��(t; �xt))� D3f(t; �x(t); ��(t)) _�x(t� �(t; �xt))D2�(t; �xt) ; (2.5)and the funtiong : [0;1)� 
3 ! Rn ; g(t;  ) � f(t;  (0);  (��(t;  ))) � F (t) : (2.6)Note that for eah t � 0 the linear operator F (t) is bounded, sine by (H2) it satis�esjF (t) j � � maxt2[0;T ℄ ��D2f(t; �x(t); ��(t))��+ maxt2[0;T ℄ ��D3f(t; �x(t); ��(t))�� (1 + maxt2[0;T ℄ j _�x(t)j maxt2[0;T ℄ jD2�(t; �xt)jL(C;R))�k k:By these notations we an rewrite (2.1) as_x(t) = F (t)xt + g(t; xt); t � 0; (2.7)



and therefore we an onsider it as a perturbation of the homogeneous linear T -periodiFDE _y(t) = F (t)yt; t � 0: (2.8)We denote the fundamental solution of (2.8) by U(t; s), i.e., it is a matrix valued solutionof the initial value problem�� tU(t; s) = F (t)U(�; s)t; t � s; (2.9)U(t; s) = � I; t = s;0; t < s: (2.10)It is known (see, e.g., [9℄) that the asymptoti stability of the trivial solution of (2.8) isequivalent to its exponential stability, and to that there exist onstants K0 � 1 and �0 > 0suh that jU(t; s)j � K0e��0(t�s); t � s: (2.11)The proof of our main theorem will be based on the following series of lemmas.Lemma 2.2 Assume (H2), and let �x : [�r;1) ! Rn be a ontinuously di�erentiable andT -periodi funtion. Then there exists a onstant N3 � 0 suh that for every � > 0 thereexists �2 > 0 suh that for any S > 0j�x(t��(t; xt))��x(t��(t; �xt))+ _�x(t��(t; �xt))D2�(t; �xt)(xt��xt)j � N3(�+kxt��xtk)kxt��xtkfor t 2 [0; S℄ and for any ontinuous funtion x : [�r;1)! Rn satisfyingxt 2 BC(A3; �2); t 2 [0; S℄: (2.12)Proof For a �xed t 2 [0; S℄ we introdue the real funtionp(s) = �x(t� �(t; �xt + s(xt � �xt))) + s _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt):The Chain Rule implies that the real funtion p is ontinuously di�erentiable, and_p(s) = �� _�x(t��(t; �xt+s(xt��xt)))D2�(t; �xt+s(xt��xt))+ _�x(t��(t; �xt))D2�(t; �xt)�(xt��xt):Then the de�nition of p and the Mean Value Theorem yield that there exists � 2 [0; 1℄ suhthatj�x(t� �(t; xt))� �x(t� �(t; �xt)) + _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt)j= jp(1) � p(0)j= j _p(�)j� ��� _�x(t� �(t; �xt))� _�x(t� �(t; �xt + �(xt � �xt)))������D2�(t; �xt + �(xt � �xt))���L(C;R)kxt � �xtkj _�x(t� �(t; �xt))j���D2�(t; �xt)�D2�(t; �xt + �(xt � �xt))���L(C;R)kxt � �xtk: (2.13)Let L1 and L2 be the onstants from (H2) (ii) and (iii), respetively, orresponding to theset BC(A3; %3). Fix an arbitrary � > 0. Sine _�x is T -periodi, and so it is uniformly



ontinuous, for any � > 0 there exists Æ > 0 suh that j _�x(u)� _�x(~u)j � �ju� ~uj for u; ~u � �rsatisfying ju� ~uj � Æ, and there exists a onstant R1 � 0 suh that j _�x(t)j � R1 for t � �r.Let �2 � min(%3; Æ=L1), and suppose x satis�es (2.12). Then (H2) (ii) impliesj�(t; �xt)� �(t; �xt + �(xt � �xt))j � L1kxt � �xtk � Æ;and hene ��� _�x(t� �(t; �xt))� _�x(t� �(t; �xt + �(xt � �xt)))��� � �:Using (H2) (iii) and the periodiity of � there exists a onstant R2 � 0 suh that���D2�(t; �xt + �(xt � �xt))���L(C;R) � ���D2�(t; �xt)���L(C;R) + L2kxt � �xtk � R2for any funtion satisfying (2.12). Then the statement of the lemma follows from (2.13)with N3 = max(R2; R1L2). 2Lemma 2.3 Assume (H1), (H2), and let �x : [�r;1)! Rn be a ontinuously di�erentiableand T -periodi solution of (2.1) orresponding to initial funtion �', and let x be a solutionof (2.1)-(2.2) satisfying (2.4). Then there exists a onstant N4 > 0 suh that for any S > 0j _x(t)� _�x(t)j � N4kxt � �xtk; t 2 [0; S℄ (2.14)and kxt � �xtk � eN4tk'� �'k; t 2 [0; S℄ (2.15)for any solution x of (2.1) satisfyingxt 2 BC(A3; %3); t 2 [0; S℄: (2.16)Proof Let N2 be the onstant from Lemma 2.1, �x S > 0, and suppose x satis�es (2.16).Then the Mean Value Theorem, Lemma 2.1 and (2.3) yield for t 2 [0; S℄j _x(t)� _�x(t)j = jf(t; x(t); �(t)) � f(t; �x(t); ��(t))j� N1(jx(t)� �x(t)j+ j�(t)� ��(t)j)� N1(1 +N2)kxt � �xtk:Therefore (2.14) holds with N4 = N1(1 +N2).To prove (2.15), onsider the inequalitiesjx(t)� �x(t)j � j'(0) � �'(0)j+ Z t0 j _x(s)� _�x(s)j ds � k'� �'k+N4 Z t0 kxs � �xsk ds:Let v(t) � maxfjx(s)� �x(s)j : �r � s � tg. Thenjx(t)� �x(t)j � k'� �'k+N4 Z t0 v(s) ds; t 2 [0; S℄;and sine the right-hand-side is monotone inreasing in t, it impliesv(t) � k'� �'k+N4 Z t0 v(s) ds; t 2 [0; T ℄:Therefore Gronwall's inequality proves (2.15), sine kxt � �xtk � v(t). 2We will need the following estimate of g.



Lemma 2.4 Assume (H1), (H2), and let �x : [�r;1)! Rn be a ontinuously di�erentiableand T -periodi solution of (2.1) orresponding to initial funtion �', and let x be a solutionof (2.1)-(2.2). Then there exists a onstant N5 � 0 suh that for every � > 0 there exists�3 > 0 suh that for any S > rjg(t; xt)� g(t; �xt)j � 8<: N5(� + 1)kxt � �xtk 0 � t � r;N5�� + maxt�r�s�t kxs � �xsk� kxt � �xtk; t 2 [r; S℄for x satisfying xt 2 BC(A3; �3); t 2 [0; S℄: (2.17)Proof The de�nition of g and F , and the Mean Value Theorem implyjg(t; xt)� g(t; �xt)j = jf(t; x(t); �(t)) � f(t; �x(t); ��(t))� F (t)(xt � �xt)j= ���f(t; x(t); �(t)) � f(t; �x(t); ��(t))�D2f(t; �x(t); ��(t))(x(t) � �x(t))� D3f(t; �x(t); ��(t))�x(t� �(t; �xt))� ��(t)�+ D3f(t; �x(t); ��(t)) _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt)���� ���f(t; x(t); �(t)) � f(t; �x(t); ��(t))�D2f(t; �x(t); ��(t))(x(t) � �x(t))� D3f(t; �x(t); ��(t))(�(t) � ��(t))���+ ���D3f(t; �x(t); ��(t))�x(t� �(t; xt))� x(t� �(t; �xt))+ _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt)����� sup0<�<1���D2f�t; �x(t) + �(x(t)� �x(t)); ��(t) + �(�(t)� ��(t))�� D2f(t; �x(t); ��(t))���jx(t)� �x(t)j+ sup0<�<1���D3f�t; �x(t) + �(x(t)� �x(t)); ��(t) + �(�(t)� ��(t))�� D3f(t; �x(t); ��(t))���j�(t)� ��(t)j+ ���D3f(t; �x(t); ��(t))�x(t� �(t; xt))� x(t� �(t; �xt))+ _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt)����: (2.18)Fix � > 0 and S > r. By the ontinuous di�erentiability and T -periodiity of f guaranteedby (H1) there exists Æ > 0 suh thatjD2f(t; u; v)�D2f(t; ~u; ~v)j � � and jD3f(t; u; v)�D3f(t; ~u; ~v)j � �hold for t � 0, u; ~u 2 BRn(A1; %1), v; ~v 2 BRn(A2; %2), and ju� ~uj � Æ and jv � ~vj � Æ. LetL1 and L2 be the onstants from (H2) (ii) and (iii), respetively, orresponding to the setBC(A3; %3), let N2, N3 and N4 be the onstants from Lemmas 2.1, 2.2 and 2.3, respetively,and let �2 be the onstant from Lemma 2.2 orresponding to �. De�ne�3 � min(Æ=N2; %1; %2=N2; �2; %3);



and suppose x satis�es (2.17). Then jx(t) � �x(t)j � Æ and j�(t) � ��(t)j � Æ for t 2 [0; S℄.Therefore it follows from (2.3), (2.18), Lemma 2.1 and 2.2 for t 2 [0; S℄jg(t; xt)� g(t; �xt)j� �jx(t) � �x(t)j+ �j�(t)� ��(t)j+ N1����x(t� �(t; xt))� �x(t� �(t; �xt)) + _�x(t� �(t; �xt))D2�(t; �xt)(xt � �xt)���+ N1jx(t� �(t; xt))� x(t� �(t; �xt))� �x(t� �(t; xt)) + �x(t� �(t; �xt))j� �(1 +N2 +N1N3)kxt � �xtk+N1N3kxt � �xtk2+ N1jx(t� �(t; xt))� x(t� �(t; �xt))� �x(t� �(t; xt)) + �x(t� �(t; �xt))j: (2.19)For t 2 [0; r℄ we estimate the last term of (2.19) simply asjx(t� �(t; xt))� x(t� �(t; �xt))� �x(t� �(t; xt)) + �x(t� �(t; �xt))j � 2kxt � �xtk:For t � r we use a di�erent estimate: the Mean Value Theorem, (H1) (ii), and relationst� �(t; xt) � 0 and t� �(t; �xt) � 0 yieldjx(t� �(t; xt))� x(t� �(t; �xt))� �x(t� �(t; xt)) + �x(t� �(t; �xt))j� L1 maxs2[t�r;t℄ j _x(s)� _�x(s)j � kxt � �xtk:Therefore Lemma 2.3 implies for t 2 [r; S℄jx(t� �(t; xt))� x(t� �(t; �xt))� �x(t� �(t; xt)) + �x(t� �(t; �xt))j� L1N4 maxs2[t�r;t℄ kxs � �xsk � kxt � �xtk:Hene the statement of the lemma follows from (2.19) withN5 � max (1 +N2 +N1N3; N1N3 + L1N1N4; N1N3%3 + 2N1) : 2We show that the exponential stability of the periodi steady-state solution �x of thenonlinear sd-FDE (2.1) an be obtained by that of the homogeneous linear FDE (2.8).Theorem 2.5 Assume (H1), (H2), and let �x : [�r;1) ! Rn be a ontinuously di�er-entiable and T -periodi solution of (2.1) orresponding to initial funtion �'. Suppose thetrivial solution of (2.8) is exponentially stable, i.e., there exist K0 � 1 and �0 > 0 suhthat (2.11) holds. Then for every 0 < � < �0 there exists Æ > 0 and K � 1 suh that ifk'� �'k < Æ, then any orresponding solution x(t) = x(t;') of (2.1) satis�esjx(t)� �x(t)j � Ke��tk'� �'k; t � 0;i.e., �x is an exponentially stable periodi steady-state of (2.1).Proof Fix " > 0 and 0 < � < �0. Let N4 and N5 be the onstants de�ned by Lemma 2.3and 2.4, respetively, and let � � "(�0 � �)2(1 + ")K0N5 e��r:



De�ne �3 = �3(�) by Lemma 2.4, letÆ1 � min�%1; %3; �3; �; �N4� ; K1 � K0 �1 + rN5e(�0+N4)r� ; and K � (1 + ")K1;and �nally, let Æ � Æ1K :Let ' 2 C be suh that k' � �'k < Æ, and let x(t) = x(t;') be a orresponding solution of(2.1)-(2.2). Then jx(t)� �x(t)j < Æ1 for small t > 0 sine Æ < Æ1. Suppose there exists S > 0suh that jx(t)� �x(t)j < Æ1; for t 2 [0; S); and jx(S)� �x(S)j = Æ1: (2.20)The variation-of-onstants formula (see, e.g., [9℄) impliesx(t) = U(t; 0)'(0) + Z t0 U(t; s)g(s; xs) ds; t � 0:Similarly, �x(t) = U(t; 0) �'(0) + Z t0 U(t; s)g(s; �xs) ds; t � 0:Thereforejx(t)� �x(t)j � jU(t; 0)jj'(0) � �'(0)j+ Z t0 jU(t; s)jjg(s; xs)� g(s; �xs)j ds; t � 0: (2.21)Suppose S > r. Relations Æ1 � �3, (2.11) and Lemma 2.4 imply for t 2 [r; S℄jx(t)� �x(t)j � K0e��0tk'� �'k+K0 Z r0 e��0(t�s)N5(� + 1)kxs � �xsk ds+K0 Z tr e��0(t�s)N5(� + maxs�r�u�skxu � �xuk)kxs � �xsk ds:Sine maxs�r�u�skxu � �xuk � Æ1 � �; s 2 [0; S℄;it followsjx(t)� �x(t)j � K0e��0tk' � �'k+K0N5(� + 1)Z r0 e��0(t�s)kxs � �xsk ds+K0N52� Z tr e��0(t�s)kxs � �xsk ds� K0e��0tk' � �'k+K0N5e��0t Z r0 e�0skxs � �xsk ds+K0N52�e��0t Z t0 e�0skxs � �xsk ds:Note that the last inequality holds for t 2 [0; r℄ and for S � r, as well. Multiplying bothsides of this inequality by e�t, and using relation (2.15) and the de�nition of K1 we gete�tjx(t)� �x(t)j � K1k'� �'k+K0N52�e(���0)t Z t0 e�0skxs � �xsk ds:
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