
Fields Institute CommuniationsVolume 00, 0000
Stability in delay perturbed di�erential and di�ereneequationsIstv�an Gy}ori and Feren HartungDepartment of Mathematis and ComputingUniversity of Veszpr�emH-8201 Veszpr�em, P.O.Box 158, Hungarygyori�almos.vein.hu and hartung�szt.vein.hu1 IntrodutionIn this paper we summarize our earlier work onerning preserving stability un-der delay perturbation (see [1℄, [8℄{[10℄), and present some new stability theoremsfor ertain lasses of linear di�erential and di�erene equations. We will show thatour results extend many known so-alled 3/2-type or �=2-type stability theorems(see, e.g., [14℄{[16℄, [20℄{[22℄). Our onditions are formulated with the help of thefuntion �(�) = Z 10 ju(t; �)j dt;where u(t; �) is the fundamental solution of the linear delay di�erential equation_x(t) = �x(t� �); t � 0:We also present some new exponential estimates for u(t; �) and for �(�).2 Fundamental solution of a linear delay di�erential equationLet � > 0, and u be the solution of the initial value problem (IVP)_u(t) = �u(t� �); t � 0; (2.1)u(t) = � 1; t = 0;0; t < 0; (2.2)i.e., u is the fundamental solution of the salar delay di�erential equation_x(t) = �x(t� �); t � 0: (2.3)If we want emphasize that the fundamental solution orresponds to delay � , we usethe notation u(t; �).1991 Mathematis Subjet Classi�ation. 34K15, 34K20.This researh was partially supported by Hungarian National Foundation for Sienti� Re-searh Grant No. T019846 and Hungarian Ministry of Eduation Grant No. 1024/97.0000 Amerian Mathematial Soiety1



2 Istv�an Gy}ori and Feren HartungLet � = �0 + i�0 be the root of the harateristi equation� = �e��� (2.4)of (2.3) with maximal real part. It is known (see, e.g., [11℄) that �0 < 0 if and onlyif � 2 [0; �=2), and for any " > 0 there exists M" > 0 suh that ju(t)j �M"e(�0+")tfor t � 0. The following result gives the value of M" expliitly, and provides anexponential estimate of ju(t)j with exponent �0t, as well.Theorem 2.1 Let � 2 [0; �=2), u(t) = u(t; �) be the fundamental solution of(2.3), �0 + i�0 be the root of (2.4) with maximal real part, and " > 0 be suh that�0 + " < 0. Then the fundamental solution satis�es for t � 0ju(t)j � 11� " e(�0+")t; where " = e��0� Z 0�� e�"(s+�) os�0s ds; (2.5)and ju(t)j � 2t+ �(1� )� e�0t; where  = e��0� Z ��=2�� os�0s ds: (2.6)Proof Let � 2 [0; �=2) be �xed, and let �0 + i�0 be the root of (2.4) withmaximal real part. It is known (see, e.g., [5℄ or Theorem 2.3 below) that �0 2[0; �=(2�)), therefore os�0s > 0; s 2 [��; 0℄: (2.7)It follows from (2.4) that �0 = e��0� sin�0� , thereforee��0� Z 0�� os�0s ds = 1: (2.8)This implies that 0 < " < 1 and 0 <  < 1, where " and  are de�ned by (2.5)and (2.6), respetively.The funtion y(t) = e�0t os�0t is a solution of (2.1), and so the variation-of-onstants formula (see, e.g., [11℄) yieldsy(t) = u(t)y(0)� Z 0�� u(t� s� �)e�0s os�0s ds:Using (2.7) we getju(t)j � e�0t + Z 0�� ju(t� s� �)je�0s os�0s ds; t � 0: (2.9)Multiplying this inequality by e�(�0+")t, and using that u(t) = 0 for t < 0, we getthat the funtion w"(t) = e�(�0+")tju(t)j satis�esw"(t) � 1+ e��0� Z 0�� w"(t� s� �)e�"(s+�) os�0s ds � 1+ " max0�s�tw"(s); t � 0;whih proves (2.5).Similarly, de�ne w(t) = e��0tju(t)j. Then (2.9) yields for t � 0w(t) � 1 + e��0� Z ��=2�� w(t� s� �) os�0s ds+e��0� Z 0��=2w(t� s� �) os�0s ds: (2.10)



Stability in delay perturbed di�erential and di�erene equations 3Let Mn be de�ned by Mn = supfw(s) : n�=2 � s � (n+ 1)�=2g, n = 0; 1; : : : . Weshow by indution that Mn � n+ 11�  ; n = 0; 1; : : : : (2.11)We have for t 2 [n�=2; (n+ 1)�=2℄(n� 1)�2 � t� s� � � (n+ 1)�2 ; for s 2 [��;��=2℄; (2.12)and (n� 2)�2 � t� s� � � n�2 ; for s 2 [��=2; 0℄: (2.13)Therefore, using that u(t) = 0 for t < 0, (2.10) yieldsw(t) � 1 + M0; t 2 [0; �=2℄;and so M0 � 1=(1 � ). Suppose (2.11) is known for integers from 0 to n � 1.The de�nitions of  and Mn, relations (2.8), (2.10), (2.12) and (2.13), and theindutional hypothesis implyw(t) � 1 + maxfMn;Mn�1g+ (1� )maxfMn�1;Mn�2g� 1 + maxfMn;Mn�1g+ n t 2 [n�=2; (n+ 1)�=2℄:If Mn �Mn�1, thenw(t) � n+ 1 +  n1�  < n+ 11�  ; t 2 [n�=2; (n+ 1)�=2℄and so Mn � (n+ 1)=(1� ). If Mn > Mn�1, thenw(t) � n+ 1 + Mn; t 2 [n�=2; (n+ 1)�=2℄;and hene Mn � n + 1 + Mn, i.e., Mn � (n + 1)=(1 � ). Therefore we proved(2.11) for all n � 0, but this yields (2.6), using the inequality [2t=� ℄ � 2t=� , where[�℄ is the greatest integer funtion.It follows from the above results that the trivial solution of (2.3) is asymptoti-ally stable, if and only if R10 ju(t; �)j ds <1. We introdue the funtion�(�) = Z 10 ju(t; �)j dt: (2.14)Then �(�) = 1 for � � �=2. It is known (see, e.g., [5℄) that u(t; �) > 0 fort > 0, if and only if � � 1=e. For � � 1=e it follows easily from (2.1) that�(�) = R10 u(t; �) dt = 1. For 1=e < � < �=2 numerial estimate of � yieldsFigure 1. Here we used a numerial approximation method introdued in [6℄ toobtain approximate values of u, and the simple trapezoidal method to estimate �.As we will see in the next setion, we an formulate stability theorems withthe help of the funtion �, but in applying those results it is important to know anupper estimate of �(�). Theorem 2.1 has the following orollary in this diretion.
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0.2 0.4 0.6 0.8 1 1.2 1.4Figure 1 The graph of �(�)Corollary 2.2 Using the notations of Theorem 2.1, we have�(�) � �1(1� ")(�0 + ") ; � 2 [0; �=2); (2.15)and �(�) � 11�  � 2�20� � 1�0� ; � 2 [0; �=2): (2.16)Note that both estimates are worse than that given in [5℄.Theorem 2.3 (Theorem 2.1, [5℄) For � 2 [0; �=2) the harateristi equa-tion (2.4) has a root �0 = �0 + i�0, suh that �0 < 0, �0 2 [0; �=(2�)), �0 is thegreatest real part of the roots of (2.4), and�(�) � �20 + �20�20 : (2.17)Inequality (2.17) is exat for � 2 [0; 1=e℄, sine then �0 = 0. For a given� 2 (1=e; �=2) we an use Theorem 2.1 to estimate �(�) in the following way. Letun denote the restrition of u to the interval [n�; (n+1)� ℄. By integrating (2.1), itis easy to see thatu0(t) = 1; t 2 [0; � ℄;un(t) = un�1(n�)� Z tn� un�1(s� �) ds; t 2 [n�; (n+ 1)� ℄; n � 1;and therefore un is an nth order polynomial, whih an easily be generated, e.g.,using a omputer algebra system like Maple V. Sine un is a polynomial, MapleV an symbolially integrate R (n+1)�n� jun(s)j ds. Therefore if we write �(�) =RM�0 ju(t)j dt+ R1M� ju(t)j dt, then we an ompute the exat value of the �rst inte-gral, and, using Theorem 2.1, we have an upper estimateEM (�) = 1(1� )� Z 1M� (2t+ �)e�0t dt



Stability in delay perturbed di�erential and di�erene equations 5of the seond one. Denoting the �rst integral by IM (�), we have �(�) � IM (�) +EM (�). Unfortunately, as numerial experiments show, this omputation of un isnot stable, i.e., for large n the omputed formula for un ontains signi�ant round-o� errors. In Table 1 the numerial result of our omputer experiment an be seenwhere we seleted M by a ertain algorithm so that M be reasonably small, andomputed IM (�) over [0;M� ℄ (by omputing the integral exatly over subintervalswhere the funtion un has onstant sign by the symboli integration of Maple V,and adding up those values). Note that � = 0:2 and 0.3 is omputed only to testthe method. Table 1� 0.2 0.3 0.4 0.5 0.6 0.7 0.8M 22 13 7 8 9 11 15IM (�) 0.997 0.998 1.001 1.083 1.260 1.511 1.846EM (�) 0.156 0.044 0.019 0.040 0.084 0.112 0.082IM (�) +EM (�) 1.153 1.042 1.02 1.123 1.344 1.623 1.928� 0.9 1.0 1.1 1.2 1.3 1.4 1.5M 17 20 26 26 26 25 24IM (�) 2.289 2.895 3.803 5.390 8.027 18.795 18.907EM (�) 0.191 0.402 0.591 4.254 29.77 243.5 3275IM (�) +EM (�) 2.48 3.297 4.394 9.644 37.80 262.3 3294Open problem This numerial estimate of � ertainly requires a lot of om-putations. It is still an interesting open problem to give a (omputable) formulafor an upper estimate of �(�) better than (2.17). Find estimates for R10 ju(t; �)j dt,where u is the fundamental solution of the multiple delay equation_x(t) = � mXi=1 aix(t � �i):The next theorem shows that � is a ontinuous funtion.Theorem 2.4 The funtion � is ontinuous on [0; �=2).Proof Fix �0 2 [0; �=2), and let � 6= �0. The harateristi root with greatestreal part of (2.3) orresponding to �0 and � is denoted by �0 + i�0 and � + i�,respetively. It is easy to see that � ! �0 and � ! �0 as � ! �0 (see also [6℄). Itis known (see, e.g., [11℄) that u(t; �)! u(t; �0) as � ! �0 for every �xed t > 0. Let" > 0 be suh that �0+2" < 0, and let � be suh that the orresponding � satis�es� � �0 + ". Let �;" and �0;" be the onstants de�ned by (2.5) orresponding to" > 0 and to �; � and �0; �0, respetively. Then Theorem 2.1 yields thatju(t; �)� u(t; �0)j � 11� �;" e(�+")t + 11� �0;" e(�0+")t; t � 0:Sine �;" ! �0;" as � ! �0, there exists M > 0 suh that ju(t; �) � u(t; �0)j �Me(�0+2")t, for t � 0. Then Lebesgue's Dominated Convergene Theorem yieldsj�(�) ��(�0)j � Z 10 ju(t; �)� u(t; �0)j dt! 0; as � ! �0:



6 Istv�an Gy}ori and Feren HartungOpen problem Prove that � is a monotone inreasing funtion (as Figure 1indiates). 3 Stability of linear delay di�erential equationsThe funtion � introdued in the previous setion plays an important role inthe stability theory of delay di�erential equations. We just reall two examplesfrom the literature. In [5℄ global attrativity results was proved for equations ofthe form _x(t) = �ax(t� �) + f(t; x(t� �(t)))with the help of estimate (2.17) of �. In [9℄ the following theorem was proved forthe asymptoti stability of_x(t) = � mXi=1 aix(t � �i � �i(t)); t � 0; (3.1)omparing its stability to the \unperturbed" equation_y(t) = � mXi=1 aiy(t� �i); t � 0: (3.2)Here �i : [0;1)! [0;1) are pieewise ontinuous bounded funtions.Theorem 3.1 (Theorem 3.1, [9℄) Suppose that the trivial solution of (3.2)is asymptotially stable, andmXi=1 jaij limt!1j�i(t)j < 1(Pmi=1 jaij) R10 jv(t)j ds ; (3.3)where v is the fundamental solution of (3.2). Then the trivial solution of (3.1) isasymptotially stable, as well.In the appliation of this theorem we need either the exat value of R10 jv(t)j ds,whih is known if v(t) > 0 (see [9℄), or an upper estimate of it, whih is known sofar only for the single delay ase (see Theorem 2.3).Let ai > 0 (i = 1; : : : ;m), and onsider the linear delay equation_x(t) = � mXi=1 aix(t� �i(t)); t � 0: (3.4)We an onsider Equation (3.4) as the delay perturbation of_y(t) = � mXi=1 ai! y(t� �) (3.5)with the perturbations �i(t) = �i(t)�� , where � � 0. Let v denote the fundamentalsolution of (3.5), then _v(t) = �(Pmi=1 ai)v(t � �). Therefore an appliation ofTheorem 3.1 yields that if 0 � �Pmi=1 ai < �=2, andmXi=1 ai limt!1j�i(t)� � j < 1(Pmi=1 ai) R10 jv(t)j dt ; (3.6)



Stability in delay perturbed di�erential and di�erene equations 7then the trivial solution of (3.4) is asymptotially stable. Introduing u(t) =v(t=Pmi=1 ai) we get_u(t) = 1Pmi=1 ai _v� tPmi=1 ai� = �v� tPmi=1 ai � �� = �u t� � mXi=1 ai! :On the other hand,� � mXi=1 ai! = Z 10 ju(t)j dt = Z 10 ����v� tPmi=1 ai����� dt =  mXi=1 ai!Z 10 jv(t)j dt:Therefore, using the relationlimt!1jf(t)j = max� limt!1f(t);� limt!1f(t)� ; (3.7)we get immediately the following result.Theorem 3.2 Suppose ai > 0, �i : [0;1) ! [0;1) is pieewise ontinuous(i = 1; : : : ;m), and there exists � 2 [0; �=(2a)) suh that�a� 1�(�a) < mXi=1 ai limt!1�i(t) � mXi=1 ai limt!1�i(t) < �a+ 1�(�a) ; (3.8)where a �Pmi=1 ai. Then the trivial solution of (3.4) is asymptotially stable.Note that the �rst inequality of (3.8) is automatially satis�ed if 0 � �a � 1=e,sine then �(�a) = 1. See Figure 2 for the numerially generated graph of thefuntions � + 1=�(�) and � � 1=�(�).
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Figure 2 The graphs of � + 1=�(�) and � � 1=�(�)Suppose there exists � 2 [0; �=2) suh that � + 1=�(�) > �=2. Then, applyingTheorem 3.2 for m = 1 and a = 1, we ould �nd a onstant delay �(t) = � � �=2,suh that the trivial solution of _x(t) = �x(t� �) was asymptotially stable, whihis impossible for suh �. Therefore we have the following orollary of the theorem.



8 Istv�an Gy}ori and Feren HartungCorollary 3.3 The funtion � satis�es1. 1�2 � � � �(�), � 2 [0; �=2),2. lim�!�2��(�) = +1.We get a speial ase of Theorem 3.2 in the following way. De�ne�0 = infft : t� 1=�(t) � 0g: (3.9)Part 2 of Corollary 3.3 and 1=e < 1=�(1=e) yields that suh �0 exists, and sine � isontinuous, �0 = 1=�(�0). The numerial study of Figure 2 indiates that equation� = 1=�(�) has exatly one solution, and �0 � 0:65.Corollary 3.4 Suppose ai > 0, �i : [0;1) ! [0;1) is pieewise ontinuous(i = 1; : : : ;m), and let �0 be de�ned by (3.9). Assumelimt!1�i(t) < 2�0Pmi=1 ai for i = 1; : : : ;m:Then the trivial solution of (3.4) is asymptotially stable.Proof Let a =Pmi=1 ai, and �x � > 0 suh that 2� < 2�0=a and limt!1�i(t) <2� for i = 1; : : : ;m. For this � we havemXi=1 ai limt!1�i(t) < 2a� < a� + 1�(a�) ;sine a� < �0. On the other hand a� � 1=�(a�) < 0, therefore Theorem 3.2 provesthe orollary.Consider the delay equation_x(t) = �x(t� �(t)); t � 0: (3.10)Myshkis showed in [17℄, that if supf�(t) : t � 0g < 3=2, then the trivial solution of(3.10) is asymptotially stable, and he gave an example, where supf�(t) : t � 0g 2(3=2; �=2) and the orresponding equation has unstable trivial solution. Note thatin his example limt!1�(t) = 0. Many other papers generalized this 3/2-type result(see, e.g., [14℄, [20℄{[22℄). Ladas et al. showed [15℄ that if limt!1 �(t) 2 [0; �=2),then the trivial solution of (3.10) is asymptotially stable.Our Theorem 3.2 generalizes both results. Ladas' ondition is inluded in(3.8) using � = limt!1 �(t). Myshkis' ondition an be weaker than (3.8) in thease 0 < � � 1=�(�). On the other hand, we formulate our ondition in terms oflimt!1�(t) and limt!1�(t) instead of supt�0 �(t) and inft�0 �(t). Moreover, iflimt!1 �(t) does not exist, and limt!1�(t) 2 (3=2; �=2), then Theorem 3.2 andCorollary 3.3 imply that if limt!1�(t) is \not too small", then the trivial solutionof (3.10) is asymptotially stable.Corollary 3.5 For any  2 (3=2; �=2) there exists b < , suh that the trivialsolution of (3.10) is asymptotially stable, ifb < limt!1�(t) � limt!1�(t) < :



Stability in delay perturbed di�erential and di�erene equations 9Now we give another appliation of Theorem 3.2. Consider the time-dependentsalar delay equation _x(t) = �a(t)x(t� �(t)); t � 0; (3.11)where a : [0;1) ! [0;1) is ontinuous suh that R10 a(t) dt = 1. The nexttheorem extends the result of Yoneyama [19℄, where it was proved that0 < inft�0 Z t+qt a(s) ds � supt�0 Z t+qt a(s) ds < 32 ;where q = supt�0 �(t), implies the asymptoti stability of the trivial solution of(3.11). Ladas et al. [15℄ proved, that if �(t) = � is onstant, andlimt!1 Z tt�� a(s) ds 2 [0; �=2);then the trivial solution of (3.11) is asymptotially stable. We have the followingresult.Theorem 3.6 Suppose a : [0;1)! [0;1) is ontinuous, the funtion A(t) =R t0 a(s) ds is stritly monotone inreasing, R10 a(t) dt =1, and � : [0;1)! [0;1)is pieewise ontinuous and bounded, and assume there exists � 2 [0; �=2) suh that� � 1�(�) < limt!1 Z tt��(t) a(s) ds � limt!1 Z tt��(t) a(s) ds < � + 1�(�) : (3.12)Then the trivial solution of (3.11) is asymptotially stable.Proof The inverse of A exists, limt!1A�1(t) = 1, and A�1 is ontinuousand di�erentiable. De�ne the funtion�(t) = Z A�1(t)A�1(t)��(A�1(t)) a(s) ds:Then � : [0;1)! [0;1) is pieewise ontinuous, and�(t) = Z A�1(t)0 a(s) ds� Z A�1(t)��(A�1(t))0 a(s) ds = t�A�A�1(t)� �(A�1(t))�;and hene A�1(t� �(t)) = A�1(t)� �(A�1(t)): (3.13)Let y(t) = x(A�1(t)). Then_y(t) = ddt (A�1(t)) _x(A�1(t)) = �x�A�1(t)� �(A�1(t))�;therefore, using (3.13), y satis�es_y(t) = �y(t� �(t)): (3.14)We have limt!1 y(t) = 0, if and only if limt!1 x(t) = 0, sine limt!1A�1(t) =1.Hene Theorem 3.2 implies the statement of this theorem, usinglimt!1�(t) = limt!1 Z tt��(t) a(s) ds and limt!1�(t) = limt!1 Z tt��(t) a(s) ds:



10 Istv�an Gy}ori and Feren Hartung4 Stability of linear delay di�erene equationsWe denote the set of nonnegative integers by N0 , and de�ne the forward dif-ferene operator by �x(n) � x(n+ 1)� x(n). Consider the linear delay di�ereneequation �x(n) = � mXi=1 aix(n� ki(n)); n 2 N0 ; (4.1)where ai > 0 and ki : N0 ! N0 , (i = 1; : : : ;m), and there exists r > 0 suh thatki(n) � r for n 2 N0 and i = 1; : : : ;m. Equation (4.1) has a unique solution,assuming that x(n) = '(n); (4.2)for some ' : [�r; 0℄! R.In [1℄ it was proved that if ki(n) = ki are onstants for i = 1; : : : ;m andPmi=1 aiki < 1, then the trivial solution of (4.1) is asymptotially stable. In [8℄ itwas shown that either one of the two onditions1. there exists T > 0 suh that ki(n) � 1=(4Pmj=0 aj) for n > T and i =0; 1; : : : ;m;2. There exists T > 0 and 0 � � � 1 suh that �=(4Pmj=0 aj) 2 N0 , ki(n) ��=(4Pmj=0 aj) for n > T and all i = 0; 1; : : : ;m, and mXi=0 ai limn!1ki(n) < 1+�4implies the asymptoti stability of the trivial solution of (4.1). The idea of theproof was to ompare the stability of (4.1) to that of the equation �y(n) =�(Pmi=1 ai)y(n � l), and use the disrete version of Theorem 2.3 (see [8℄ for de-tails).In this paper we ompare the stability of the disrete equation (4.1) to that ofa di�erential equation. We assoiate the linear delay di�erential equation_y(t) = � mXi=1 aiy�[t℄� ki([t℄)�; t � 0; (4.3)and the initial ondition y(t) = '(t); t 2 [�r; 0℄; (4.4)to (4.1)-(4.2), where [�℄ is the greatest integer funtion. Equation (4.3) is a so-alledequation with pieewise onstant argument (EPCA). EPCAs were �rst introduedand studied by Cooke and Wiener in [2℄ and [3℄. For further developments see[4℄ and [18℄. EPCAs were also used in [1℄, [6℄, [8℄ and [12℄ to get numerialapproximations for di�erent lasses of di�erential equations.Integrating both sides of (4.3) from n to t 2 [n; (n+ 1)), we gety(t)� y(n) = � mXi=1 aiy�n� ki(n)�(t� n):Therefore IVP (4.3)-(4.4) has a unique solution, whih is pieewise linear betweennonnegative integers, andy(n+ 1)� y(n) = � mXi=1 aiy�n� ki(n)�; n 2 N0 : (4.5)



Stability in delay perturbed di�erential and di�erene equations 11We an observe that the solutions of (4.1) and (4.3) are related by y(n) = x(n).Therefore the trivial solution of (4.1) is asymptotially stable, if and only if, so isthe trivial solution of (4.3).Rewrite (4.3) as _y(t) = � mXi=1 aiy�t� �i(t)�; t � 0; (4.6)where �i(t) � ki([t℄) + t� [t℄: (4.7)Theorem 3.2 yields that the trivial solution of (4.6) (i.e., that of (4.3)) is asymp-totially stable, if for some � 2 [0; �=(2a)) it follows�a� 1�(�a) < mXi=1 ai limt!1�i(t) � mXi=1 ai limt!1�i(t) < �a+ 1�(�a) ; (4.8)where a �Pmi=1 ai. Sinelimn!1ki(n) � limt!1�i(t) and limt!1�i(t) � limn!1ki(n) + 1;we get the following result.Theorem 4.1 Suppose ai > 0 (i = 1; : : : ;m), a � Pmi=1 ai, and for some� 2 [0; �=(2a))�a� 1�(�a) < mXi=1 ai limn!1ki(n) � mXi=1 ai limn!1ki(n) < (� � 1)a+ 1�(�a) (4.9)holds. Then the trivial solution of (4.1) is asymptotially stable.Note that the right-hand-side of (4.9) an not be replaed by �a + 1=�(�a),sine that would imply, using Corollary 3.3, that if m = 1 and ki(n) = k onstant,then the trivial solution of (4.1) was asymptotially stable, if and only if ak < �=2.This ontradits to the known ondition (see, e.g., [13℄) that the trivial solution of�x(n) = �ax(n� k) is asymptotially stable if and only if0 < ak < 2k os k�2k + 1 :Applying Theorem 4.1 with � = 1=(ea) the theorem has the following orollary.Corollary 4.2 Suppose 0 < ai (i = 1; : : : ;m), andmXi=1 ai limn!1ki(n) < 1 + 1e � mXi=1 ai: (4.10)Then the trivial solution of (4.1) is asymptotially stable.Similarly to Corollary 3.4 we get the next result.



12 Istv�an Gy}ori and Feren HartungCorollary 4.3 Let �0 be de�ned by (3.9). Assume ai > 0 (i = 1; : : : ;m),Pmi=1 ai < 2�0, andlimn!1ki(n) < 2�0Pmi=1 ai � 1 for i = 1; : : : ;m:Then the trivial solution of (4.1) is asymptotially stable.Note that Corollaries 4.2 and 4.3 improve the results of [8℄.The method of Theorem 3.6 an be applied for disrete equations, as well.Consider the time-dependent salar linear delay di�erene equation�x(n) = �a(n)x(n� k(n)); n 2 N0 ; (4.11)where a : N0 ! [0;1), k : N0 ! N0 . Ladas et al. [16℄ proved that ifk(n) = k; 1Xn=0 a(n) =1 and limn!1 nXi=n�k a(i) < 1;then the trivial solution of (4.11) is asymptotially stable. Gy}ori and Pituk [10℄showed that k(n) = k and limn!1 n�1Xi=n�k a(i) < 1imply the asymptoti stability or (4.11). In some ases the following theoremextends these results.Theorem 4.4 Assume P1n=0 a(n) = 1, and there exists � 2 [0; �=2) suhthat � � 1�(�) < limn!1 n�1Xi=n�k(n) a(i) � limn!1 nXi=n�k(n) a(i) < � + 1�(�) : (4.12)Then the trivial solution of (4.11) is asymptotially stable.Proof Let b : [0;1) ! [0;1) be the ontinuous funtion satisfying b(n) = 0and b(n+ 1=2) = 2a(n), and whih is pieewise linear between these values. ThenR n+1n b(s) ds = a(n), and the funtionB : [0;1)! [0;1); B(t) = Z t0 b(s) dsis a bijetive, stritly monotone inreasing funtion. Assoiate the delay di�erentialequation _y(t) = �b(t)y([t℄� k([t℄)) (4.13)to (4.11). Integrating (4.13) from n to t 2 (n; n + 1) and taking the limit ast! (n+ 1)� we gety(n+ 1)� y(n) = ��Z n+1n b(s) ds� y(n� k(n));i.e., y(n) = x(n) for n 2 N0 . The funtion z(t) = y(B�1(t)) satis�es_z(t) = �y�[B�1(t)℄� k([B�1(t)℄)�: (4.14)



Stability in delay perturbed di�erential and di�erene equations 13Let �(t) = Z B�1(t)[B�1(t)℄�k([B�1(t)℄) b(s) ds;then � satis�es [B�1(t)℄� k([B�1(t)℄) = B�1(t� �(t)), therefore (4.14) yields_z(t) = �z(t� �(t)): (4.15)We have limt!1�(t) � limt!1 Z [B�1(t)℄[B�1(t)℄�k([B�1(t)℄) b(s) ds = limn!1 n�1Xi=n�k(n) a(i)and limt!1�(t) � limt!1 Z [B�1(t)℄+1[B�1(t)℄�k([B�1(t)℄) b(s) ds = limn!1 nXi=n�k(n) a(i);therefore the theorem follows from Theorem 3.2.The theorem has the following orollary.Corollary 4.5 Assume P1n=0 a(n) =1, andlimn!1 nXi=n�k(n) a(i) < 1 + 1e :Then the trivial solution of (4.11) is asymptotially stable.Referenes[1℄ K. L. Cooke and I. Gy}ori, Numerial approximation of the solutions of delay di�erentialequations on an in�nite interval using pieewise onstant arguments, 28:1{3 (1994) 81{92.[2℄ K. L. Cooke and J. Wiener, Retarded di�erential equations with pieewise onstant delays,J. Math. Anal. Appl., 99 (1984) 265{297.[3℄ K. L. Cooke and J. Wiener, Stability regions for linear equations with pieewise ontinuousdelays, Computers Math. Appli., 12A (1986) 695{701.[4℄ K. L. Cooke and J. Wiener, A survey of di�erential equations with pieewise ontinuousarguments, in Delay Di�erential Equations and Dynamial Systems, eds. S. Busenberg andM. Martelli (Leture Notes in Math. 1475, Springer-Verlag, Berlin, 1991, 1{15.[5℄ I. Gy}ori, Global attrativity in a perturbed linear delay di�erential equation, Appliable Anal-ysis, 34 (1989) 167{181.[6℄ I. Gy}ori, Approximation of the solution of delay di�erential equations by using pieewiseonstant arguments, International J. of Math. Math. Sienes, 14 (1991) 111{126.[7℄ I. Gy}ori, F. Hartung and J. Turi, Numerial approximations for a lass of di�erential equa-tions with time- and state-dependent delays, Applied Math. Letters, 8:6 (1995) 19{24.[8℄ I. Gy}ori, F. Hartung and J. Turi, On the e�et of delay perturbations on the stability ofdelay di�erene equations, Proeedings of the First International Conferene on Di�ereneEquations, San Antonio, Texas, May 1994, eds. S. N. Elaydi, J. R. Graef, G. Ladas and A.C. Peterson, Gordon and Breah, 1995, 237{253.[9℄ I. Gy}ori, F. Hartung and J. Turi, Preservation of Stability in Delay Equations under DelayPerturbations, J. Math. Anal. Appl., 220 (1998), 290{312.[10℄ I. Gy}ori and M. Pituk, Asymptoti stability in a linear delay di�erene equation, in Advanesin Di�erene Equations, Proeedings of the Seond International Conferene on Di�ereneEquations, eds. S. Elaydi, I. Gy}ori and G. Ladas, Gordon and Breah Siene Publishers,Amsterdam, 1997.[11℄ J. K. Hale and S. M. Verduyn Lunel, Introdution to Funtional Di�erential Equations,Spingler-Verlag, New York, 1993.
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