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Abstra
tIn this paper we investigate the exponential stability of the trivial solution of thestate-dependent delay di�erential equation _x(t) = a(t)x(t � �(t; x(t))). It is shownthat, under some 
onditions, this state-dependent equation is exponentially stable, ifthe trivial solution of _y(t) = a(t)y(t � �(t; 0)) is exponentially stable. Assuming theexisten
e of bounded partial derivatives of the delay fun
tion, the reverse statementwill also be proved.AMS(MOS) subje
t 
lassi�
ation: 34K, 34D1 Introdu
tionIn this paper we study the asymptoti
 behavior of the state-dependent delay equation_x(t) = a(t)x(t� �(t; x(t))): (1.1)Similar questions have been studied in [5℄{[7℄, [13℄{[22℄ for various 
lasses of state-dependentequations. [5℄ and [6℄ show that the asymptoti
 behavior of the autonomous version of(1.1) for a(t) = a < 0 is equivalent to that of the 
orresponding ODE _x(t) = ax(t), i.e.,the trivial solution of both equations are exponentially stable. [14℄ proves that equation(1.1) with a(t) = a > 0 and �(t; u) = juj is unstable, but the speed of the 
onvergen
eof the solution to 1 is not ne
essary exponential. [22℄ relates the asymptoti
 behaviorof (1.1) to the ODE _x(t) = a(t)x(t), assuming a(t) � 0, 0 � �(t; u) � Kjuj. [7℄ and[13℄ 
ompares the asymptoti
s of some 
lasses of autonomous state-dependent equationswith distributed delays to 
ertain 
onstant delay equations (to the so-
alled \linearized"equations). [12℄ shows that, under 
ertain 
onditions, the trivial solution of a time-, but1



not state-dependent delay equation is exponentially stable if and only if the trivial solutionof a 
ertain 
onstant delay equation is exponentially stable.Motivated by [12℄, and based on a te
hnique applied for the investigation of the asymp-toti
 stability problem in delay perturbed equations in [10℄, we investigate the exponentialstability of (1.1) through that of the linear equation_y(t) = a(t)y(t� �(t; 0)): (1.2)We will show (see Theorem 2.2 below) that if the trivial solution of the \linearized" equation(1.2) is exponentially stable, then so is the trivial solution of (1.1). For equations with someextra smoothness on the delay we will prove that the statement 
an be reversed, i.e., (1.1) isexponentially stable if and only if (1.2) is exponentially stable (see Theorem 2.3 below). Asa 
onsequen
e of our theorems, we 
an give expli
it suÆ
ient 
onditions for the exponentialstability of (2.1) (see Corollary 2.4 below), and ne
essary and suÆ
ient 
onditions in the
ases the equations are autonomous (see Corollary 2.5 below) or the linearized equation(1.2) is an ordinary di�erential equation (see Corollary 2.6 below).Finally, we refer the interested reader (without 
ompleteness) to [1℄{[4℄, [15℄{[19℄, [23℄for some re
ent appli
ations and general theory of state-dependent di�erential equationsfrom the re
ent mathemati
al literature.2 Main resultsConsider the s
alar state-dependent delay equation_x(t) = a(t)x(t� �(t; x(t))); t � t0; (2.1)with initial 
ondition x(t) = '(t); t 2 [t0 � r; t0℄: (2.2)We assume that t0 � 0 and r > 0 are �xed, and(H1) a : [t0;1)! R is 
ontinuous, and ja(t)j � a0, t 2 [t0;1) for some 
onstant a0;(H2) the delay fun
tion � : [t0;1)� R ! [0; r℄ is 
ontinuous;(H3) there exist a 
onstant 
 > 0 and a 
ontinuous fun
tion ! : (�
; 
) ! [0;1), su
hthat j�(t; u)� �(t; 0)j � !(u); t 2 [t0;1); u 2 (�
; 
);and !(0) = 0.Note that for autonomous equations (H1) and (H3) are automati
ally satis�ed, assuming� : R ! [0; r℄ is 
ontinuous.Throughout this paper we use the notation k'k � maxfj'(s)j : t0 � r � s � t0g. Thisnotation does not emphasize the dependen
e of k'k on t0, be
ause we 
an 
onsider t0 tobe �xed. 2



Lemma 2.1 Assume (H1){(H2), and let ' be 
ontinuous on [t0 � r; t0℄. Then the initialvalue problem (2.1)-(2.2) has a solution, x, whi
h is de�ned for all t � t0, and satis�esjx(t)j � ea0(t�t0)k'k (2.3)for all t � t0.Proof The existen
e of solution of (2.1)-(2.2) on an interval [t0 � r; T ) for some T > t0follows, e.g., from [8℄ or [9℄. Here we prove that (2.3) is satis�ed for t 2 [t0; T ), whi
h easilyyields that the solution 
an be extended for all t � t0. Integrating (2.1) from t0 to t > t0we get x(t) = '(t0) + Z tt0 a(s)x(s� �(s; x(s))) ds;therefore for t 2 [t0; T ) jx(t)j � k'k+ a0 Z tt0 maxt0�r�u�s jx(u)j ds:The right-hand-side is monotone in t and jx(t)j � k'k for t 2 [t0 � r; t0℄, thereforemaxt0�r�u�t jx(u)j � k'k+ a0 Z tt0 maxt0�r�u�s jx(u)j ds; t 2 [t0; T );whi
h proves the statement, using Gronwall's inequality. 2Note that the uniqueness of the solution of initial value problem (2.1)-(2.2) (whi
h isnot ne
essary to have to dis
uss stability) does not follow from our assumptions (H1){(H3).See [13℄ for a 
ounterexample, and [8℄, [9℄ or [13℄ for 
onditions implying existen
e anduniqueness of solutions for more general state-dependent delay equations.We asso
iate the linear delay equation_y(t) = a(t)y(t� �(t; 0)); t � t0 (2.4)to (2.1). This equation 
an be 
onsidered as the \linearization" of (2.1), sin
e, as The-orem 2.2 shows, the exponential stability of the trivial solution of (2.4) implies that ofequation (2.1).The trivial solution of the linear equation (2.4) is exponentially stable, if there exist
onstants � > 0 and K > 0 su
h that any solution of (2.4) 
orresponding to initial time t0satis�es jx(t)j � Ke��(t�t0)k'k; t � t0: (2.5)It is known (see, e.g., [11℄) that, under our assumptions, the exponential stability of thetrivial solution of (2.4) is equivalent to the uniform asymptoti
 stability of the trivial so-lution. The trivial solution of the nonlinear equation (2.1) is 
alled exponentially stable, ifthere exist positive 
onstants K, � and �, su
h that (2.5) holds for any solution x of (2.1)
orresponding to any initial time t0 � 0 and initial fun
tion satisfying k'k < �.3



Theorem 2.2 Suppose (H1){(H3). If the trivial solution of (2.4) is exponentially stable,then the trivial solution of (2.1) is exponentially stable, as well.Proof We 
an rewrite (2.1) in the form_x(t) = a(t)x(t� �(t; 0)) + f(t);where f(t) � a(t)�x(t� �(t; x(t))) � x(t� �(t; 0))�:This equation 
an be 
onsidered as a perturbation of (2.4) by the for
ing term f(t), thereforethe variation-of-
onstants formula (see, e.g., [11℄) yieldsx(t) = y(t) + Z tt0 v(t; s)f(s) ds; t � t0; (2.6)where y is the solution of (2.4) asso
iated to the initial 
ondition (2.2), and v is the funda-mental solution of (2.4), i.e., the solution of the initial value problem�v�t (t; s) = a(t)v(t� �(t; 0); s); t � s; (2.7)v(t; s) = � 1; t = s;0; t < s: (2.8)It is known (see, e.g., [11℄) that the assumed exponential stability of (2.4) is equivalent tothat there exist 
onstants K1;K2 � 1 and � > 0 that the solution y and the fundamentalsolution v of (2.4) satisfy the exponential estimatesjy(t)j � K1e��(t�t0)k'k; t � t0; and jv(t; s)j � K2e��(t�s); t � s:Therefore it follows from (2.6) thatjx(t)j � K1e��(t�t0)k'k +K2 Z tt0 e��(t�s)jf(s)j ds: (2.9)Let t1 � minft � �(t; x(t)); t � �(t; 0)g and t2 � maxft � �(t; x(t)); t � �(t; 0)g. Thenjf(t)j = ja(t)jjx(t2) � x(t1)j. We 
onsider three 
ases: (i) t2 � 0, (ii) t1 � 0 and (iii)t1 < 0 < t2. In 
ase (i) we have the estimate jf(t)j � 2a0k'k. In 
ase (ii) equation (2.1)implies thatjf(t)j = ja(t)j ����Z t2t1 x(s� �(s; x(s))) ds���� � a0j�(t; x(t)) � �(t; 0)j�k'k + maxt0�u�t jx(u)j�:In 
ase of (iii) we have by 
ases (i) and (ii) thatjf(t)j � a0jx(t2)� x(0)j+ a0jx(0)� x(t1)j � a0t2�k'k + maxt0�u�t jx(u)j� + 2a0k'k:4



Therefore, using (H3), for all t � 0jf(t)j � 2a0k'k+ a0!(x(t))�k'k + maxt0�u�t jx(u)j� (2.10)holds. It follows from (2.9) and (2.10) thatjx(t)j � K1e��(t�t0)k'k+K2a0e��t(k'k+ maxt0�u�t jx(u)j)Z tt0 e�s�2k'k+!(x(s))� ds: (2.11)Assumption (H3) implies that there exists 0 < "0 < 
 su
h thatK2a0� maxjuj�"0 !(u) � 14 : (2.12)Let 0 < " � "0 be arbitrary, and de�neÆ � min( "3(K1 + 12) ; �8K2a0) : (2.13)Fix an initial fun
tion satisfying k'k � Æ, and let x be any solution of (2.1) 
orresponding tothis initial fun
tion. Then j'(0)j � Æ < ", therefore there exists T > t0 su
h that jx(t)j < "for t 2 [t0; T ). Suppose jx(T )j = ". Then (2.11), (2.12) and (2.13) imply that" � K1e��(T�t0)Æ +K2a0e��T (Æ + ")(2Æ +maxjuj�"!(u))Z Tt0 e�s ds� K1Æ + K2a0� (Æ + ")(2Æ +maxjuj�"!(u))= K1Æ + K2a0� 2Æ2 + K2a0� maxjuj�"!(u)Æ + K2a0� 2Æ" + K2a0� maxjuj�"!(u)"� K1Æ + Æ4 + Æ4 + "4 + "4 ;whi
h, together with (2.13), yields "2 � K1Æ + Æ2 � "3 :This 
ontradi
tion means that jx(t)j < " is satis�ed for all t > 0, i.e., the trivial solution of(2.1) is (uniformly) stable.Next we show that the trivial solution of (2.1) is exponentially stable, as well. Let0 < � < � be arbitrary, and 0 < " < 
 be su
h thatK2a20e2�r�� � maxjuj�"!(u) < 1; (2.14)and 0 < � � " be su
h that jx(t)j < " for t � t0 and for k'k < �. Fix any initial fun
tionsatisfying k'k < �, and let x be any 
orresponding solution of (2.1). Multiplying both sides5



of (2.9) by e�(t�t0) we gete�(t�t0)jx(t)j � K1e�(���)(t�t0)k'k +K2e�(t�t0) Z tt0 e��(t�s)jf(s)j ds� K1e�(���)(t�t0)k'k+K2a0e�(t�t0)��t Z t0+rt0 e�sjx(s� �(s; x(s)))� x(s� �(s; 0))j ds+K2a0e�(t�t0)��tZ tt0+re�s �����Z s��(s;x(s))s��(s;0) a(u)x(u� �(u; x(u)))du�����ds: (2.15)It follows from (2.3) that jx(t)j � ea0rk'k; t 2 [t0 � r; t0 + r℄: (2.16)Introdu
e the fun
tion z(t) � e�(t�t0)jx(t)j. With this notation we have from (2.15), (2.16),the assumptions and the Mean Value Theorem thatz(t) � K1k'k+K2a0e�(t�t0)��t2ea0rk'kZ t0+rt0 e�s ds+K2a20e�(t�t0)��t Z tt0+r e�s �����Z s��(s;x(s))s��(s;0) e��(u��(u;x(u))�t0)z(u� �(u; x(u))) du����� ds� K1k'k+K2a0e�(t�t0)��t2ea0rk'ke�(t0+r) � e�t0�+K2a20e�(t�t0)��te�r maxt0�r�u�t z(u)Z tt0+r e�s �����Z s��(s;x(s))s��(s;0) e��(u�t0) du����� ds� K1k'k+ 2K2a0� e�(���)(t�t0)e(a0+�)rk'k+K2a20� e�(t�t0)��t+�r maxt0�r�u�t z(u)Z tt0+re�s���e��(s��(s;x(s))�t0) � e��(s��(s;0)�t0)��� ds� K1k'k+ 2K2a0� e(a0+�)rk'k+K2a20� e�(t�t0)��t+�r maxt0�r�u�t z(u)Z tt0+r e(���)se�(r+t0)�j�(s; x(s)) � �(s; 0)j ds� K1k'k+ 2K2a0� e(a0+�)rk'k + K2a20�� � e2�r maxjuj�"!(u) maxt0�r�u�t z(u): (2.17)The right-hand-side of (2.17) is monotone in t, and z(t) � j'(t)j � k'k for t 2 [t0 � r; t0℄,therefore (2.17) yields�1� K2a20�� � e2�r maxjuj�"!(u)� maxt0�r�u�t z(u) � K1k'k + 2K2a0� e(a0+�)rk'k: (2.18)6



Inequality (2.14) implies that the 
onstantK � K1 + 2K2a0� e(a0+�)r1� K2a20��� e2�r maxjuj�" !(u)is positive. Hen
e it follows from (2.18) that z(t) � Kk'k, and so jx(t)j � Ke��(t�t0)k'kfor t � t0 and for k'k < �. 2Next we show that, assuming some extra 
onditions on the delay fun
tion, Theorem 2.2
an be reversed. In addition to (H1){(H3) we assume(H4) there exists Æ0 > 0 su
h that the delay fun
tion � is 
ontinuously di�erentiable on[t0;1)� [�Æ0; Æ0℄;(H5) there exist 
onstants 0 � 
 < 1 and 0 � d su
h that�������t (t; u)���� � 
 and �������u(t; u)���� � d for t 2 [t0;1); juj � Æ0:Theorem 2.3 Suppose (H1){(H5). Then the trivial solution of (2.1) is exponentially stableif and only if the trivial solution of (2.4) is exponentially stable.Proof It was shown in Theorem 2.2 that the exponential stability of the trivial solutionof (2.4) is suÆ
ient for that of (2.1). We have to show that this is also ne
essary. It isknown (see, e.g., [11℄) that the trivial solution of (2.4) is exponentially stable if and only ifthe fundamental solution of (2.4) (i.e., the solution of the initial value problem (2.7)-(2.8))satis�es an estimate of the form jv(t; s)j � K0e��0(t�s) for some positive 
onstants K0 and�0. The exponential stability of (2.1) yields that there exist K;�; � > 0 su
h that anysolution of (2.1) satis�es jx(t)j � Ke��(t�t0)k'k for t � t0, assuming k'k < �.Fix a 
ontinuous initial fun
tion ' de�ned on [t0 � r; t0℄ su
h that0 < k'k < min� (1� 
)�3a0dK2(2� + (1� 
)a0) ; 1� 
2a0dK ; Æ0K ; 
K ; �� ; (2.19)and '(t0) = k'k; and 4a0(1� 
)k'k Z t0t0�r j'(u)j du � 13 : (2.20)Let x and y be a solution of (2.1) and (2.4), respe
tively, both 
orresponding to this initialfun
tion, '. Then the variation-of-
onstants formula (see [11℄) yieldsx(t) = y(t) + Z tt0 v(t; s)g(s) ds; t � t0; (2.21)where g(t) � a(t)�x(t� �(t; x(t))) � x(t� �(t; 0))�; t � t0:7



Assumptions (H4) and (H5) implyddt�t� �(t; 0)� = 1� ���t (t; 0) � 1� 
 > 0: (2.22)It follows from (2.22) that there exists t1 � t0 su
h thatt� �(t; 0)8<: < t0; t 2 [t0; t1);= t0; t = t1;> t0; t > t1:Then Theorem 1.2 from Se
tion 6.1 of [11℄ yields the following relation (whi
h 
an be
he
ked by dire
t 
al
ulation, as well)y(t) = v(t; t0)'(t0) + Z t1t0 v(t; u)a(u)'(u � �(u; 0)) du; t � t0: (2.23)We have from (2.21) and (2.23) thatv(t; t0) = 1'(t0)x(t)� 1'(t0) Z t1t0 v(t; u)a(u)'(u � �(u; 0)) du � 1'(t0) Z tt0 v(t; s)g(s) ds;and so for t � t0jv(t; t0)j � 1k'k jx(t)j+ a0k'k Z t1t0 jv(t; u)jj'(u � �(u; 0))j du + 1k'k Z tt0 jv(t; s)jjg(s)j ds� Ke��(t�t0) + maxt0�s�t jv(t; s)j� a0k'k Z t1t0 j'(u� �(u; 0))j du + 1k'k Z tt0 jg(s)j ds�;(2.24)where in the se
ond estimate we used that v(t; u) = 0 for u > t. Using (2.22) and thede�nition of t1 we haveZ t1t0 j'(u� �(u; 0))j ddu (u� �(u; 0))ddu (u� �(u; 0)) du � 11� 
 Z t0t0�r j'(s)j ds; (2.25)therefore (2.24) yieldsjv(t; t0)j �Ke��(t�t0) + maxt0�s�t jv(t; s)j� a0k'k(1 � 
) Z t0t0�rj'(u)j du + 1k'k Z tt0 jg(s)j ds� :(2.26)Assumptions (H4), (H5), inequality jx(t)j � Kk'k, and (2.19) imply that the time-lagfun
tion, t� �(t; x(t)), is monotone in
reasing in t, more pre
isely,ddt�t� �(t; x(t))� = 1� ���t (t; x(t)) � ���u(t; x(t))a(t)x(t � �(t; x(t)))� 1� 
� a0dKk'k> 1� 
2 : (2.27)8



Therefore there exists t2 � t0 su
h thatt� �(t; x(t))8<: < t0; t 2 [t0; t2);= t0; t = t2;> t0; t > t2:It follows from (H4) and (H5), the de�nitions of t1 and t2, and from the Mean ValueTheorem thatjt2 � t1j = j�(t2; x(t2))� �(t1; 0)j � 
jt2 � t1j+ djx(t2)j � 
jt2 � t1j+ dKk'k;hen
e jt2 � t1j � dK1� 
k'k: (2.28)Suppose t > max(t1; t2), and 
onsiderZ t0 jg(s)j ds = Z min(t1;t2)t0 jg(s)j ds + Z max(t1;t2)min(t1;t2) jg(s)j ds+ Z tmax(t1;t2) jg(s)j ds� a0 Z min(t1;t2)t0 jx(s� �(s; x(s)))j ds + a0 Z min(t1;t2)t0 jx(s� �(s; 0))j ds+2a0jt2 � t1jKk'k+ a0 Z tmax(t1;t2) �����Z s��(s;x(s))s��(s;0) _x(u) du����� ds� a0 Z min(t1;t2)t0 j'(s� �(s; x(s)))j ds + a0 Z min(t1;t2)t0 j'(s� �(s; 0))j ds+2a0dK21� 
 k'k2 + a20 Z tmax(t1;t2) �����Z s��(s;x(s))s��(s;0) jx(u� �(u; x(u)))j du����� ds:(2.29)Relation (2.27) and the de�nition of t2 yieldZ t2t0 j'(s� �(s; x(s)))j dds(s� �(s; x(s)))dds (s� �(s; x(s))) ds � 21� 
 Z t0t0�r j'(s)j ds;hen
e it follows from (2.25) and (2.29) thatZ tt0 jg(s)j ds � 3a01� 
 Z t0t0�r j'(s)j ds+ 2a0dK21� 
 k'k2+ a20Kk'kZ tmax(t1;t2) j�(s; x(s))� �(s; 0)j ds� 3a01� 
 Z t0t0�r j'(s)j ds+ 2a0dK21� 
 k'k2 + a20dKk'kZ tmax(t1;t2) jx(s)jds� 3a01� 
 Z t0t0�r j'(s)j ds+ 2a0dK21� 
 k'k2 + a20dK2� k'k2: (2.30)9



Combining (2.19), (2.20), (2.24) and (2.30) we getjv(t; t0)j � Ke��(t�t0)+ maxt0�s�t jv(t; s)j� 4a0(1� 
)k'k Z t0t0�rj'(s)j ds+� 21� 
 + a0��a0dK2k'k�(2.31)� K + 23 maxt0�s�t jv(t; s)j: (2.32)Let t0 � �s � t. Then (2.32) impliesjv(t; �s)j � K + 23 max�s�s�t jv(t; s)j � K + 23 maxt0�s�t jv(t; s)j:Therefore maxt0�s�t jv(t; s)j � 3K:Substituting this ba
k to (2.31) we getjv(t; t0)j � Ke��(t�t0) + 3K � 4a0(1� 
)k'k Z t0t0�rj'(s)j ds +� 21� 
 + a0��a0dK2k'k� :Sin
e the se
ond term on the right-hand-side 
an be made arbitrary small by sele
ting anappropriate initial fun
tion whi
h satis�es (2.19) and (2.20) as well, we get that jv(t; t0)j �Ke��(t�t0) holds for t � t0, whi
h proves the theorem. 2Note that Theorems 2.2 and 2.3 are straightforward to extend for the multiple delay
ase, i.e., for equations of the form_x(t) = mXi=0 ai(t)x(t� �i(t; x(t))):Sin
e suÆ
ient 
onditions are known for the uniform asymptoti
 stability, and so forthe exponential stability of the linear equation (2.4) (see, e.g., [20℄), and a ne
essary andsuÆ
ient 
ondition is known for the exponential stability in the 
ase when (2.4) is anautonomous delay equation (see, e.g., [11℄), and when it is an ODE, therefore Theorem 2.3has the following 
orollaries.Corollary 2.4 Suppose (H1){(H3), and let q0 � supt�t0 �(t; 0). Then the trivial solutionof (2.1) is exponentially stable, if a(t) � 0, t � t0, andinft�t0 Z t+q0t (�a(s)) ds > 0; and supt�t0 Z t+q0t (�a(s)) ds < 32 : (2.33)
10



Lemma 2.2 of [21℄ proves that a 
ondition of the form (2.33) where q0 is repla
ed byr implies the uniform asymptoti
 stability of the trivial solution of (2.1). Corollary 2.4improves the above result of Yoneyama, sin
e q0 < r, in general, and in our result theexponential stability of (2.1) is obtained.Corollary 2.5 Suppose a(t) � �a0 < 0 and � : R ! [0; r℄ is 
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