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Abstract

In this paper we investigate the exponential stability of the trivial solution of the
state-dependent delay differential equation @(t) = a(t)z(t — 7(t,2(¢))). It is shown
that, under some conditions, this state-dependent equation is exponentially stable, if
the trivial solution of §(t) = a(t)y(t — 7(¢,0)) is exponentially stable. Assuming the
existence of bounded partial derivatives of the delay function, the reverse statement
will also be proved.

AMS(MOS) subject classification: 34K, 34D

1 Introduction

In this paper we study the asymptotic behavior of the state-dependent delay equation

#(t) = a(t)z(t — 1(t, 2(1))). (1.1)

Similar questions have been studied in [5]-[7], [13]-[22] for various classes of state-dependent
equations. [5] and [6] show that the asymptotic behavior of the autonomous version of
(1.1) for a(t) = a < 0 is equivalent to that of the corresponding ODE () = ax(t), i.e.,
the trivial solution of both equations are exponentially stable. [14] proves that equation
(1.1) with a(t) = a > 0 and 7(¢,u) = |u| is unstable, but the speed of the convergence
of the solution to oo is not necessary exponential. [22] relates the asymptotic behavior
of (1.1) to the ODE #(t) = a(t)z(t), assuming a(t) < 0, 0 < 7(t,u) < Klul. [7] and
[13] compares the asymptotics of some classes of autonomous state-dependent equations
with distributed delays to certain constant delay equations (to the so-called “linearized”
equations). [12] shows that, under certain conditions, the trivial solution of a time-, but



not state-dependent delay equation is exponentially stable if and only if the trivial solution
of a certain constant delay equation is exponentially stable.

Motivated by [12], and based on a technique applied for the investigation of the asymp-
totic stability problem in delay perturbed equations in [10], we investigate the exponential
stability of (1.1) through that of the linear equation

y(t) = at)y(t — 7(t,0)). (1.2)

We will show (see Theorem 2.2 below) that if the trivial solution of the “linearized” equation
(1.2) is exponentially stable, then so is the trivial solution of (1.1). For equations with some
extra smoothness on the delay we will prove that the statement can be reversed, i.e., (1.1) is
exponentially stable if and only if (1.2) is exponentially stable (see Theorem 2.3 below). As
a consequence of our theorems, we can give explicit sufficient conditions for the exponential
stability of (2.1) (see Corollary 2.4 below), and necessary and sufficient conditions in the
cases the equations are autonomous (see Corollary 2.5 below) or the linearized equation
(1.2) is an ordinary differential equation (see Corollary 2.6 below).

Finally, we refer the interested reader (without completeness) to [1]-[4], [15]-[19], [23]
for some recent applications and general theory of state-dependent differential equations
from the recent mathematical literature.

2 Main results

Consider the scalar state-dependent delay equation
z(t) = a(t)z(t — 7(t, z(t))), t > tg, (2.1)
with initial condition
z(t) = (1), t € [ty — 7, to]. (2.2)
We assume that ¢ty > 0 and r > 0 are fixed, and

(H1) a: [to,00) — R is continuous, and |a(t)| < ag, t € [ty, 00) for some constant ay;
(H2) the delay function 7: [tg, 00) x R — [0, 7] is continuous;

(H3) there exist a constant v > 0 and a continuous function w: (—v,7) — [0,00), such
that
|T(t7 u) - T(t70)| < w(u)a te [th OC), u € (_777)3

and w(0) = 0.

Note that for autonomous equations (H1) and (H3) are automatically satisfied, assuming
7: R — [0, 7] is continuous.

Throughout this paper we use the notation ||¢| = max{|p(s)|: to —r < s < to}. This
notation does not emphasize the dependence of @] on ty, because we can consider ty to
be fixed.



Lemma 2.1 Assume (H1)-(H2), and let ¢ be continuous on [tg — r,to]. Then the initial
value problem (2.1)-(2.2) has a solution, x, which is defined for all t > to, and satisfies

jz(t)] < el 10)||g| (2.3)
for all t > tg.

Proof The existence of solution of (2.1)-(2.2) on an interval [ty — r,T) for some T' > ¢
follows, e.g., from [8] or [9]. Here we prove that (2.3) is satisfied for ¢ € [to,T), which easily
yields that the solution can be extended for all ¢ > ;. Integrating (2.1) from ¢y to ¢ > tg
we get
t
o(t) = plta) + [ als)als = r(s,(5)) ds,

to

therefore for ¢ € [ty,T")

o—r<u<s

t
o) < ol +ao [ max_lau)|ds.
to
The right-hand-side is monotone in ¢ and |z(t)| < ||¢|| for ¢ € [tg — 7, tg], therefore

t
< d t to, T
L max [ow)] < [l + ao / Jmax[o(u)lds, b€ [k, T),

which proves the statement, using Gronwall’s inequality. O

Note that the uniqueness of the solution of initial value problem (2.1)-(2.2) (which is
not necessary to have to discuss stability) does not follow from our assumptions (H1)-(H3).
See [13] for a counterexample, and [8], [9] or [13] for conditions implying existence and
uniqueness of solutions for more general state-dependent delay equations.

We associate the linear delay equation
y(t) = a(t)y(t —7(t,0),  t=>t (2.4)

to (2.1). This equation can be considered as the “linearization” of (2.1), since, as The-
orem 2.2 shows, the exponential stability of the trivial solution of (2.4) implies that of
equation (2.1).

The trivial solution of the linear equation (2.4) is exponentially stable, if there exist
constants @ > 0 and K > 0 such that any solution of (2.4) corresponding to initial time %,
satisfies

2(0)] < Ke 200 g, 1> 1, (2.5)

It is known (see, e.g., [11]) that, under our assumptions, the exponential stability of the
trivial solution of (2.4) is equivalent to the uniform asymptotic stability of the trivial so-
lution. The trivial solution of the nonlinear equation (2.1) is called exponentially stable, if
there exist positive constants K, « and o, such that (2.5) holds for any solution z of (2.1)
corresponding to any initial time #; > 0 and initial function satisfying ||¢|| < o.



Theorem 2.2 Suppose (H1)-(H3). If the trivial solution of (2.4) is exponentially stable,
then the trivial solution of (2.1) is exponentially stable, as well.

Proof We can rewrite (2.1) in the form

©(t) = at)z(t — 7(t,0)) + f(2),
where

1) = a(t) (w(t = 7t 2(2)) - a(t - 7(£,0)) ).

This equation can be considered as a perturbation of (2.4) by the forcing term f(t), therefore
the variation-of-constants formula (see, e.g., [11]) yields

z(t) = y(t) -I—/t v(t,s)f(s)ds, t > to, (2.6)

where y is the solution of (2.4) associated to the initial condition (2.2), and v is the funda-
mental solution of (2.4), i.e., the solution of the initial value problem

ov
E(t,s) = a(t)v(t — 7(¢,0),s), t> s, (2.7)
ot,s) = { (1) o (2.8)

It is known (see, e.g., [11]) that the assumed exponential stability of (2.4) is equivalent to
that there exist constants Ky, Ko > 1 and a > 0 that the solution y and the fundamental
solution v of (2.4) satisfy the exponential estimates

(@) < KieT®C0lgll, t>t0,  and ot s)| < Koe 7Yt >,

Therefore it follows from (2.6) that
t
2(8)] < Kye 0| + Ky / e -9)| £ (5)] ds. (2.9)
to

Let t1 = min{t — 7(¢,z(¢)),t — 7(¢,0)} and to = max{t — 7(¢,2(¢)),t — 7(¢,0)}. Then
|f(t)] = |a(t)||z(t2) — z(t1)|. We consider three cases: (i) to < 0, (ii) ¢; > 0 and (iii)
t1 < 0 < t9. In case (i) we have the estimate |f(¢)| < 2ao||¢|. In case (ii) equation (2.1)
implies that

[ ats =7t ats) s

t1

£ ()] = |a(?)]

< aolr(t,2(t)) = 7(6,0)|(Jlgll + max o(w)]).
In case of (iii) we have by cases (i) and (ii) that

F(0)] < aola(ta) = 2(0) + aola(0) = a(t2)| < aota [l + max, law)]) +2alp.



Therefore, using (H3), for all ¢ > 0
7] < 20l + aow(z(t) (] + max, [2(u)]) (2.10)

holds. It follows from (2.9) and (2.10) that

t
(0] < Kie ™ gl + Kaane (|l + max lo(u)) [ e (2ol +aals)) ds. (211
O_Ugt tO

Assumption (H3) implies that there exists 0 < gy < 7 such that

(2.12)

Let 0 < € < gg be arbitrary, and define

£ o
0 = min , . 2.13
{3(K1+%) SKQaU} (2.13)

Fix an initial function satisfying ||¢|| < 4, and let z be any solution of (2.1) corresponding to
this initial function. Then |p(0)| < § < ¢, therefore there exists T' > to such that |z(¢)] < e
for t € [to,T). Suppose |z(T)| = e. Then (2.11), (2.12) and (2.13) imply that

T
e < Kie®T%)5 1 Koape " (6 + €)(26 4+ max w(u)) / e ds
to

lul<e

K
< K0+ =226 + €)(20 + maxw(u))
o |u|<e
K K K K
= K6+ 29052 22290 max w(u)d + 290 95 4+ 2290 ax w(u)e
07 o |ul<e o o |ul<e

0 & € €
< K -+ -+ -+
< 15+4+4+4+4,

which, together with (2.13), yields

<Ki64=<

N

N ™
Ll m

This contradiction means that |z(t)| < ¢ is satisfied for all ¢ > 0, i.e., the trivial solution of
(2.1) is (uniformly) stable.

Next we show that the trivial solution of (2.1) is exponentially stable, as well. Let
0 < B < a be arbitrary, and 0 < € < 7 be such that

Kga%ew’"
= <1, 2.14
P ‘rg‘gw(w (2.14)

and 0 < o < ¢ be such that |z(t)| < e for ¢ > tg and for ||¢|| < ¢. Fix any initial function
satisfying ||¢| < o, and let = be any corresponding solution of (2.1). Multiplying both sides



of (2.9) by e#(:=10) we get

t
eﬂ(t—to)|x(t)| < K16_(a_’8)(t_t0)||90|| +K2€ﬁ(t_t°)/ E_Q(t_s)|f(3)‘d5
to

IN

Kie” @ =)g)

to+r
—i—Kgaoeﬂ(t_to)_at/ e®lz(s — 7(s,2(s))) — z(s — 7(s,0))| ds
to
t
_|_K2a06ﬁ(t—to)—at/ Qs
to+r

s—7(s,3(s))
/ a(u)z(u — 7(u, z(u)))du|ds. (2.15)
—7(s,0)

It follows from (2.3) that
z(t) < e ], t € fto—r,to+7). (2.16)

Introduce the function z(t) = ef(*~%0)|z(¢)|. With this notation we have from (2.15), (2.16),
the assumptions and the Mean Value Theorem that
to+r

Ki|lg|| + Kaage? o) —atgem0r| )| e ds
to

IA

2(t)

t
—I-Kgageﬁ(tto)at/ e’ ds

to+r

s—7(s,2(s))
/ efﬁ(u*T(U,I(u))*tU)z(u — T(U, q}(u))) du
—7(s,0)

a(to+r) _ ecto

e
< Killgll + KaageP=1o)=otoe00m g ”
t s—7(s,x(s))
+KoaZePlt—to)=atehr  max z(u)/ eas/ e Alu=to) gy | ds
to—r<u<t to+r —7(s,0)
2K
< Kiflpl| + =2 (o At eleotalr g
«
KQag B(t—to)—at+Br ! as|, —B(s—7(s,x(s))—to) —B(s—7(s,0)—10)
+——e 0 max  z(u) e le : o) —e H)to
B to—r<u<t to+r
2K2ag
< Killell + ——— eleotelrjo|
Kaa{ 5(1—t0)—at+pr L (aB)s Blrtto)
+—¢ 0 max  z(u) e e BT (s,z(s)) — 7(s,0)|ds
B to—r<u<t to+r
2K2ag ( K2a2
< ag+a)r 208y 98y .
< Killell+ —— ||90||+a_ﬂ6 ﬁi’iw(“)toﬁi"ig/(“)

(2.17)

The right-hand-side of (2.17) is monotone in ¢, and z(¢) < |p(t)| < |l¢|| for ¢ € [tg — r, to],
therefore (2.17) yields

ao —I—a

KQG% 283r
(1- 222 maxw(u))  max_ 2(u) < Killgpl + =220t (2.18)

2K2a0
a—pf lu|<e to—r<u<t o



Inequality (2.14) implies that the constant

- Kl + QKO%ao e(a0+a)r

Kya?
1-— rﬂoewr max| | <. w(u)

is positive. Hence it follows from (2.18) that z(t) < K|¢|, and so |z(t)] < KePt=to)||y]|
for t > tg and for ||¢|| < o. a

Next we show that, assuming some extra conditions on the delay function, Theorem 2.2
can be reversed. In addition to (H1)-(H3) we assume

(H4) there exists 9 > 0 such that the delay function 7 is continuously differentiable on
[to, 00) % [=do, dol;

(H5) there exist constants 0 < ¢ < 1 and 0 < d such that

or

Ol <c  and Fo(tuw) <d - for € [tn,00), [ul <.
u

ot

Theorem 2.3 Suppose (H1)-(H5). Then the trivial solution of (2.1) is exponentially stable
if and only if the trivial solution of (2.4) is exponentially stable.

Proof It was shown in Theorem 2.2 that the exponential stability of the trivial solution
of (2.4) is sufficient for that of (2.1). We have to show that this is also necessary. It is
known (see, e.g., [11]) that the trivial solution of (2.4) is exponentially stable if and only if
the fundamental solution of (2.4) (i.e., the solution of the initial value problem (2.7)-(2.8))
satisfies an estimate of the form |v(t, s)| < Koe~®(t=3) for some positive constants Ky and
ag. The exponential stability of (2.1) yields that there exist K,«a,0 > 0 such that any
solution of (2.1) satisfies |z(t)| < Ke~t=to)||¢|| for t > ty, assuming ||¢|| < o.
Fix a continuous initial function ¢ defined on [ty — r, o] such that

1 -
0<|<p|<min{ (1=c)a ¢ % 7 } (2.19)

3a0dK2(2a + (1 — ¢)ag)’ 2a0dK’ K K'°

and .
4&0 0

(1 =ollell Jig—r

Let x and y be a solution of (2.1) and (2.4), respectively, both corresponding to this initial
function, ¢. Then the variation-of-constants formula (see [11]) yields

1
¢(to) = llell, and lp(u)]du < 3. (2.20)

z(t) = y(t) -I—/ v(t, s)g(s)ds, t > to, (2.21)

to

where

9(t) = at) (a(t = r(t,2(1)) — 2t = 7(,0))), >t

7



Assumptions (H4) and (H5) imply

%(t_T(t,o))_1—%(t 0)>1-c>0. (2.22)

It follows from (2.22) that there exists ¢; > to such that

< to, t € [tg,tl),
t—T(t,O) :to, t:tl,
> 1o, t> 1.

Then Theorem 1.2 from Section 6.1 of [11] yields the following relation (which can be
checked by direct calculation, as well)

t1
y(8) = v(t, o) (to) +/t o(t w)a(u)p(u — 7w, 0)) du, £ > to. (2.23)
We have from (2.21) and (2.23) that

1 1 th 1 t
2(to) /to v(t,u)a(u)p(u — 7(u,0)) du — 200) /to v(t,s)g(s) ds,

¢(to)
and so for ¢t > tg

z(t) —

U(t, to) =

1 ag t1
v(t, to)| < m|x(t)|+m i ot u)||p(u — 7(u,0))| du + — o H \v(t $)|1g(s)| ds
efoz(tfto) max |v(t.s o " u—T1(u W s
=R e, ot >|(,M0H / p(u = 7(,0)]d +|| i |g( >|d),
(2.24)

where in the second estimate we used that v(¢,u) = 0 for v > ¢. Using (2.22) and the
definition of ¢; we have

t1 A (, _ 0 1 to
/ o — 7(u, 0y 2T O) [ tets)ias (2.25)
to @(U - 7(u,0)) l—-c to—r
therefore (2.24) yields
o(t, to)| < Ke oltto) o )( at t°\(>\d |<>|d
v(t, tg)] <Ke "' 4+ max |v(t,s 7/ U+ — g(s s).
: to<s<t lell(T =) Jyys I ||
(2.26)

Assumptions (H4), (H5), inequality |z(¢)| < Kl¢|, and (2.19) imply that the time-lag
function, ¢ — 7(¢, z(¢)), is monotone increasing in ¢, more precisely,

L—rto®) = 1= Tt - St r@)aat - =(tx0)
> 1—c—agdK|g|

1-c

=

\Y

(2.27)



Therefore there exists t9 > ty such that

< 1o, t e [to,tQ),
t—T(t,.ﬁC(t)) = to, t = to,
> 1o, t > tog.

It follows from (H4) and (H5), the definitions of ¢; and t3, and from the Mean Value
Theorem that

[t2 = t1] = |7(t2, 2(t2)) — 7(t1,0)| < clta — t1| + d|z(t2)] < clta — 11| + dK |||,

hence UK
ta — 1] < 1—_C||‘P|| (2.28)

Suppose t > max(t1,t3), and consider

t min(tl,tz) max(tl,tQ) t
lAMﬂM==/ ﬂ$@+/ mm@+/ l9(s)] ds

to min(tl,tz) max(tl,tg)

min(tl,tz) min(tl,tz)
< ag/ x(s—r(s,x(s)))ds—i—ag/ z(s — 7(s,0))|ds
to to
t s—7(s,x(s)) )
+wmm—¢1Kmm+aq/ /’ (u) du| ds
max(t1,t2) |/ s—7(s,0)
min(tl,tz) min(tl,tz)
< ag/ @(3—7(3,x(3)))|ds+a0/ lo(s — 7(s,0))| ds
to to
2and K2 t s—7(s,x(s))
20 ol +df | / 2(u - 7(u, ()| dul ds.
l-c¢ max(t1,t2) |/ s—7(s,0)
(2.29)
Relation (2.27) and the definition of ¢5 yield
& L(s—7(s,2(5))) 2 [l
[ lets = r(s.aton)| ds < [ Jots)lds,
to 75 (8 = 7(s,2(s))) L—c Ji—
hence it follows from (2.25) and (2.29) that
¢ 3ag [ 2a0dK?
glds < 7 [ el ds + 5P
to c to—r c
t
+ ap K ||| 7(s,2(s)) — 7(s,0)| ds
max(tl,tQ)
3(1(] to 2agdK2 t
2 [ et ds - SPECl? + afak el [ fals)lds
to—r c max(tl,tQ)
3ag [l 200dK? o,  addK? .,
d . 2.30
P2 [ tetlds + Sl + Al (2.30)



Combining (2.19), (2.20), (2.24) and (2.30) we get

l(t, o) < Ke ()

+ max |v(t,s)| <4$ ’ \ (s)|ds-|—<i + @>a dK?|| H) (2.31)
1= lell Jrpr * T—c o)®% W=
2
< K+ - max |v(t,s)|. (2.32)
3 to<s<t

Let ty < § <t. Then (2.32) implies
[0(t,3)] < K + 2 max [v(t, 5)| < K + > max vl s)|
— m — m .
VSIS 353?%%” U 3t0§%)§(tv '8

Therefore
max |v(t, s)| < 3K.
to<s<t

Substituting this back to (2.31) we get

4a0 to

w(t, to)] < Ke (t) 4 3K (7
(L =o)llell Jio—r

2 a

o9l ds + (12, + %) and? el ).
-c  «

Since the second term on the right-hand-side can be made arbitrary small by selecting an

appropriate initial function which satisfies (2.19) and (2.20) as well, we get that |v(¢,t0)| <
Ke~(t=10) holds for t > t, which proves the theorem. O

Note that Theorems 2.2 and 2.3 are straightforward to extend for the multiple delay
case, i.e., for equations of the form

= ai(t)z(t — 7i(t, z(t))).

=0

Since sufficient conditions are known for the uniform asymptotic stability, and so for
the exponential stability of the linear equation (2.4) (see, e.g., [20]), and a necessary and
sufficient condition is known for the exponential stability in the case when (2.4) is an
autonomous delay equation (see, e.g., [11]), and when it is an ODE, therefore Theorem 2.3
has the following corollaries.

Corollary 2.4 Suppose (H1)-(H3), and let qo = sup;>, 7(t,0). Then the trivial solution
of (2.1) is exponentially stable, if a(t) <0, t > tg, and

t+qo t+qo0 3
inf / (—a(s))ds >0, and sup/ (—a(s))ds < <. (2.33)
t>to Jy t>to Jt 2

10



Lemma 2.2 of [21] proves that a condition of the form (2.33) where ¢ is replaced by
r implies the uniform asymptotic stability of the trivial solution of (2.1). Corollary 2.4
improves the above result of Yoneyama, since ¢y < r, in general, and in our result the
exponential stability of (2.1) is obtained.

Corollary 2.5 Suppose a(t) = —ag < 0 and 7: R — [0,7] is continuously differentiable in
a neighborhood of 0. Then the trivial solution of (2.1) is exponentially stable if and only if
0 < apr(0) < m/2.

Corollary 2.6 Suppose (H1)-(H5), and 7(t,0) = 0 for all t > to. Then the trivial solution
of (2.1) is exponentially stable if and only if there exists o > 0 such that

1 t
/ a(s)ds < —a, t > tg.
t_ tO tO
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