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ABSTRACT

In this paper we prove theoretical convergence for a variety of parameter iden-
tification schemes, based on approximations by equations with piecewise constant
arguments, for classes of neutral differential equations.

1. INTRODUCTION AND PROBLEM STATEMENT

Identification of unknown parameters in various classes of differential
equations, and in particular in delay differential equations, has been studied
by many authors (see e.g. [1], [2], [3] and [13] and the references therein).
All of these papers follow the same “general method”, which we briefly
describe below.

Consider e.g., the initial value problem (IVP) for the nonlinear delay
system with time-dependent delays

i(t) = f (L), ot - o)), >0 (1)

with initial condition
z(t) = (t), t € [-r0], (2)
containing “unknown” parameters, 7. In the initial value problem (IVP)

defined by (1)-(2), the parameters, v, are not known explicitly, but some
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information is available via measurements (Xg, X1,...,X;) of the solu-
tion, z(t), at discrete time values (tg,#1,...,%). The goal is to find the
parameter value, which minimizes the least squares fit-to-data criterion
J(v) = Zi:o \z(t;;v) — X;|?, where v belongs to an admissible set A con-
tained in the parameter space I'. (Denote this problem by P). The general
method consists of the following steps:

Step 1) First take finite dimensional approximations of the parameters,
NV, Ge, YN e AN cTN c T, dimTN < o0, 7YV = v as N = o).

Step 2) Consider a sequence of approximate initial value problems corre-
sponding to a discretization of IVP (1)-(2) for some fixed parameter 4"V €
'Y with solutions y™ (-; ¥V) satisfying y™ (t,7V) — z(t,7) as N, M — oo,
uniformly on compact time intervals, and vV € AN,

Step 3) Define the least square minimization problems (P™-M): for each
N,M =1,2,... ie., find Y¥™ ¢ AN c 'V, which minimizes the least
squares fit-to-data criterion JNM(yN) = S [yM(;4N) — X2, AN €
AN, Often AY is the projection of A to IT'V, and we restrict our discussion
to this case.

Step 4) Assuming that A is a compact subset of I', argue, that the
sequence of solutions, YN (N, M = 1,2,...), of the finite dimensional
minimization problems P™™ has a convergent subsequence with limit
yel.

Step 5) Show that 7 is the solution of the minimization problem P.

Note that Steps 4 and 5 can be argued without using the particular
approximation method, using only a compactness argument and Step 2
above (see [13]).

In this paper we apply this general framework for identifying parameters
in IVPs corresponding to neutral functional differential equations (NFDEs)
of the form

%(m(t)+q(t)a:(t—7‘(t)))=f(t,:n(t),:v(t—o(t))), te0,T], (3)

and initial condition (2).

Our goal is the identification of ¢, 7 in (3), and the associated initial
function, ¢. Note that other parameters in the right hand side of (3) can
be identified in a similar way, but for simplicity in the discussion we restrict
our attention to these three parameters.

Assuming that the parameters g, 7 and ¢ are continuous functions,
we use I' = C([0,T]; R) x C([0,T]; R) x C([-r,0]; R") as our parameter
space. To follow the general identification method described above, first
we approximate ¢, 7 and ¢ (in supremum norm) by (finite dimensional)
functions ¢V, 7V and V. In practice (see [9] and [10]) we use linear spline

approximations (see e.g. [14]).
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In Section 2 we define several Euler-type approximation schemes (see (7)-
(8), (7)-(26) and (28)-(8) below) for NFDEs of the form (3), using equations
with piecewise constant arguments (EPCAs), and show that each scheme
satisfies the convergence property required in Step 2 of the general method.
For corresponding numerical studies we refer to [9] and [10], where several
examples illustrate the applicability of the identification method defined
in this paper. See also [4] and [11] for identification methods based on
Euler-type approximation schemes, and [12] and the references therein for
numerical approximation methods for NFDEs.

Note that EPCAs were used first in [5] to obtain numerical approxima-
tion schemes and to prove the convergence of the approximation method
for linear delay and neutral differential equations with constant delays, and
later in [6] for nonlinear delay equations with state-dependent delays. An
EPCA-based identification scheme was studied in [8] for a class of delay
equations with state-dependent delays.

2. CONVERGENCE RESULTS

Consider the vector NFDE

%(z(t) +aa(t - 7(1) = f(Lo), ot —o@),  te0,T] (4
with initial condition

z(t) = p(t), t € [-r0], (5)
We make the following assumptions:

(H1) T >0,q € C([0,T]; R), o € C([0,T]; [0,x)), » € C([-r,0]; R"),
(H2) f € C([0,T] x R" x R"; R") is locally Lipschitz-continuous in its
second and third arguments, i.e., for every M > 0 there exists L =
L(M) > 0 such that |f(t,z,y) — f(t,Z,7)| < L(\x—i’\ +y —ﬂ\), for
t€0,7], z,2,y,9 € R", |2, Z], |y, 1§] < M,
(H3) 7 € C([0,T); R) is such that 0 < 7(t) for ¢t € [0,T]
(H4) r is a positive constant satisfying 7(¢) < r and o(t) < r for ¢t € [0,T].

)

Here, and throughout this paper | - | denotes a vector norm on R", and

lglc, |T|c and |p|c denote the respective supremum norms on C([0, T]; R)
C([0,T]; R) and C([—r,0]; R").



Under assumptions (H1)-(H4) IVP (4)-(5) has a unique solution (see
[7).

Throughout this paper we shall use the notation [t], = [t/h]h, where [] is
the greatest integer function. For later reference we mention an elementary
property of this function:

t—h <[t <t (6)

Let h be a positive number, ¢V, ¥ and ¢ are continuous functions
(approximating ¢, 7 and ¢ as N — oo), and 0 < 7™V (¢) < r for t € [0, T].
Following the ideas of [5], we associate the following NFDE with piecewise
constant arguments to (4) and to the parameters ¢V, 7V and ™:

@ (o) + ¥ (@m0

dt
= ({n v (0, wnn [ = o)) ()
for t € [0,T], with the initial condition
() =N (1), te -0 ®)

The subscript h and N of y, n(t) emphasizes that yj, n(t) is the solution of
(7) corresponding to the discretization parameter h and parameter values
g, 7V and . By a solution of IVP (7)-(8) we mean a function ys n :
[-r,T] — R", which is defined on [—r,0] by (8), such that the function
t = ynn®) + ¢V ([Hn)ynn(t — [TV ([t]n)]n) is continuous on [0,T], and
its derivative exists at each point ¢ € [0,T'), with the possible exception
of the points kh (k = 0,1,2,...) where finite one-sided derivatives exist,
and the function y, n satisfies (7) on each interval [kh, (k + 1)h) N [0,T]
(k=0,1,2,...). Note that yn n(#) is, in general, only right-continuous at
positive mesh points.

It is easy to see (by using the method of steps) that IVP (7)-(8) has a
unique solution defined on [0, T]. Introduce the notations a(k) = yp(kh)
and b(k) = lim,_, 1~ yn,~(¢) for the value of the solution and its left-sided
limit at mesh points, respectively. Integrating (7) from kh to ¢ and then
taking the limit as ¢ — (k + 1)h™ yields the recursive formula:

a(k+1) = a(k)+¢"(kh)a(k — [*" (kh)/R])

— ¢V ((k + 1)h)a(k + 1= [77((k + 1)h)/h]) (9)
+ hf(kh,a(k),a(k — [o(kh)/R])), for k=0,1,...,
a(k) = ¢N(kh), fork=0,-1,.... —r<kh<O0. (10)



The continuity of ya,x () + ¢™ ([tln)yn.n (¢t — [ ([114)]a) and ¢ imply

bk+1) = a(k+1)—q¢"(kh)b(k+1— [tV (kh)/h]) (11)
+a"((k+Dh)a(k+1- [tV ((k+1Dh)/K]), k=0,1,...,
b(k) = ¢N(kh), fork=0,—-1,..., —r<kh<0. (12)

Note that if ¢(t) and 7(t) are constant functions, then a(k) = b(k), i.e.,
yn,~(t) is continuous at mesh points.

These formulas show that the computation of the solution of IVP (7)-
(8) at mesh points is an easy numerical task, moreover the recursive for-
mulas use values of the solution and the initial function only at mesh
points. Since the right hand side of (7) is piecewise constant, the function
yn.N () + N ([Hn)ynn (=[N ([t]n)]n) is piecewise linear, but unfortunately
yn,N (1), in general, is not linear between mesh points, therefore computing
the solution of IVP (7)-(8) between mesh points is numerically difficult.
Consequently, this scheme is recommended for use here if we need the so-
lution only at mesh points, i.e., if the measurements are taken at mesh
points. Note that in many cases this is not a restrictive assumption.

Next we state a slightly generalized version of Lemma 3.2 from [5].

LEMMA 1. Leta > 0,b>0,a >0, 8 > 0, v = max{«a, S}, and g :
[0,T] — [0,00) be continuous and nondecreasing. Let u : [—v,T] = [0, oc)
be continuous except at finite many points 0 < t1 < ts < ... <ty < T,
where finite one-sided limits exist, and satisfy the inequality

u(t) Sg(t)+bu(t—5)+a/0 u(s — a)ds, t €10,T].

Then u(t) < d(t)et for t € [0,T], where c is the unique positive solution of
cbe P 4+ ae~ ™ = ¢, and

d(t)Emax{ 90 s ecsu(s)}, t € [0,7).

1—be=¢B’ _5<s<o

Note that in [5] this result was formulated for the case when wu(t) is con-
tinuous. The proof for this case is an obvious modification of that of the
continuous case, and therefore omitted here.

The next theorem shows that the approximation scheme (7)-(8) has the
uniform convergence property under a double limiting process, as required
in Step 2 of the general identification method.

THEOREM 1. Assume (H1)-(H4) and let |V —qlc — 0, |7V —7|c = 0
and [N — ¢|c = 0 as N — oo. Then the solution, yn n, of IVP (7)-(8)
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converges uniformly on [0,T] to the solution, =, of IVP (4)-(5) as h — 0%

and N — oo, i.e., hm max_ lz(t) — yn,n(t)] = 0.
—ot 0<t<

N—)oo

PRrROOF. Define the constants M = max{max_rgtST |z (t)], |q\c} +1,

and 7 = ming<;<7 7(t). (Note that 7 > 0.) Without loss of generality we
can assume that ¢V —qlc < 1, [V —p|c < 1, and |7V —7|c < 7/2 for all
N. Let 0 < Th,nv < T be the largest number such that |y, n(¢)| < M for
t €[0,Th N). (Th,n is well-defined since |~ (0)| < M by our assumptions.)
Integrating (4) and (7) from 0 to ¢ and using the respective initial conditions
we get

o) +a(t)alt=7(0)) = o0) +a(Op(=r(O)+ | f(s.2(5).0(s=0()) s
(13)
and

ynn () + ¢~ ([Hw)ynn (¢ = [V ([te)]n) = ¢™(0) + g™ (0)o™ (=7 (0)]n)

+ [ (s (s = o)) ds. (14

Using elementary estimates and (H2), with L = L(M), (13) and (14) imply
for t € [0 Th,N];

(t) — yn,n(1)]

< Jp(0) = @M ()] + ¢V (0)le(=7(0)) = @™ (=[N (0)]n)]
+ 19(0) = ™ (0)[lo(=7(0))| + lq(t) — ¢ ([t]n) ||2(t — 7(1))]
+ g™ ([tn)|x(t — 7(t) — ynn(t = [T ([t]h) h)|

L [ (1= (5l + lo(e) = ()] ) s (15)

t
41 [ fals = o) = yn (I~ lo((sa)le) ds.
0
We introduce the following notations for u > 0:

we(u) = sup{lz(s1) —x(s2)] @ [s1 — $2| <u, 81,80 € [-r,T|},
sup{|7(s1) — 7(s2)| : [s1 —s2f Sw, 1,8 €0, T]},
wq(u) = sup{lg(s1) —q(s2) : [s1— 82| <u, 51,82 €[0,T]}.

3
:

£
Il

Using these notations and (6) we have the following estimates for ¢ € [0, T:

la(t) =™ ([tn)] < wg(h) +la—aVle, (16)



and
(1) = PN ([l < weB) + 17 = 7N]o + b (17)
Similarly, the definition of w, and inequalities (6) and (17) imply
(=7 () =™ (=[N O)]n)] < wa (wr (W) + =7 |o+h) +lo— o, (18)
and
2t = 7(8)) = yn (= [PV (D] < wa (wr(B) +17 = 7|0 + b)
+ [t = [TV ([#1)]n) = ynn (= [PV ([Ea)]n)]- (19)

Inequality (15), together with relations (6), (16) — (19), and definition of
M yield for t € [0, T, N]:

\z(t) — yn,n (1)
< (M+1Dlp -V +2M|g—qV|c + Muw,(h)
+ 2Muw, (w,.(h) =V + h)
+ Mz(t = [PV ([t]n)]n) = ynn (@t = [TV ([Ha)]n)| + LTh

# 1 [ (100) =~ 0l0) |+ oCl0) — () s

+ 1 [ oo = oo) el - el s (@0)

# 1 [ el o(D0le) ~ (Il ~ o () s
Define the functions 2 n(f) = max_r<s<t [2(s) — ynn(s)| and gon(t) =

(M+1)‘(p—(pN|C+2M‘q—qN‘C+qu(h)+2wa(wT(h)+‘T—TN‘c-i-

h) +LTh+Lf0t(|m(s) — z([s])|+|z(s — o (s)) — z([s] — [U([s]h)]h)|)ds for
t € [-r,T] and t € [0, T], respectively. Using this notation (20) implies

|2(t) — yn,n (t)] < gn,n () + Mzp N (t = [N ([t]n)]n) + 2L /Ot zp,N(s) ds

(21)
for t € [0, Ty n]. Assumption (H3), the assumed inequality |[7—7"|c < 7/2,
and relation (6) yield

t— [N ([tn)ln <t =7 (tn) +h <t —T/2+h. (22)
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Combining (21), (22) and the inequality z; n(t) < |¢—¢"|c for t € [-r,0]
we get

Y

t
Zh,N(t) < gh,N(t)+M2h’N(t—7_'/2+h)+2L/ Zh,N(S) ds, t e [O,Th,N].
0
Applying Lemma 1 (for h < 7/2), we obtain the estimate
Zh,N(t) < dh7N(T)eChT, t e [O,Th,N], (23)

where ¢, > 0 is the unique positive solution of ¢, Me=»(7/2=h) L 9T = ¢,
and

dp,n(t) = max{ 9N (*) , max e_chszh,N(s)} , t €10,T].

1 — Me—cn(7/2=h)" _»<Is5<0

Relation (23) establishes the theorem if we show that (i) cp converges to
a limit, ¢ > 0, as h = 0%, and (ii) lim ,_o+ dp n(T) = 0. This follows

since (23) now yields that |z(t) —yh7N(t)\N<_)T, and hence |y, n(t)| < M for
t € [0, Tj ~] and for small enough h > 0 and large enough N. Consequently
this implies that T n = T for such h and N. It is easy to see that the
definition of ¢y yields ¢, — ¢, as h — 07, where ¢ > 0 is the unique positive
solution of cMe~°7/? 4 2L = ¢. Using the convergence of cp, (ii) follows if
we show that

lim gpN(T) =0 (24)
h—ot
N — oo
and
hllrﬁ —Hg?;o zp,n(s) = 0. (25)
N — oo

The definition of g5, n(t) implies (24), since 2, ¢ and ¢ are uniformly con-
tinuous functions on [—r,T], [0,T] and [—r,0], respectively. Therefore,
wz(h) = 0, wy(h) = 0 and w,(h) — 0 as h — 0T, and (6) implies that
[s]n — s, [0([s]n)]n — o(s), as h — 07. The Lebesgue’s Dominated Con-
vergence Theorem implies that the integral in g, n(T') converges to zero as
h — 0F. Finally, the inequality 0 < 25 n(s) < | — ¢N|c, s € [-r, 0] yields
(25), which completes the proof of the theorem. [ ]

The difficulty in computing the solution of the IVP (7)-(8) is a conse-
quence of the fact, that yn n () + ¢ ([t]n)yn.n (¢ — [TV ([t]n)]n) is piecewise
linear but the initial function, ¢V is not necessarily linear between mesh
points. However, if we use linear interpolation for values of the initial func-
tion between mesh points, then the linearity of the initial function will be
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preserved for y, n(t) for positive ¢. Let ¢ : [r,0] = R" be a continuous
function, 0 < h < r, and define

w(o)a SZO,
(Onh)(s) = { ([s]n) ath=s S+w<[ Jn+h) 2 s e [ls]n, [s]n + h),
Y(—r T”{; 2 4+ (=) 7 s € [=r,=[r]n),

i.e., 951 denotes the linear interpolate of the function v, using mesh points
—r, —=[rn, =[r]n + h, ..., —h,0. We consider the modified initial condition

ynn(t) = re™)(B),  te[-r,0]. (26)

Clearly, IVP (7)-(26) has a unique solution, where the values of the solution
at mesh points and its left-sided limits, a(k) and b(k), are defined by the
recursive formulas (9)-(12), (i.e., they are identical to those of IVP (7)-(8)),
and the solution, y, v, is linear on the intervals [kh, (k + 1)h). Note that
the values of the initial function between mesh points are actually not used
in computing the sequences a(k) and b(k). If approximate solution values
between mesh points are not needed, then it is enough to generate the
sequence a(k), which can be done without generating b(k). The following
theorem shows that this modified scheme has the same uniform convergence
property as scheme (7)-(8).

THEOREM 2. Assume (H1)-(H}) and let |¢V —qlc — 0, |7 —7|c = 0
and |pN — p|c = 0 as N — oc. Then the solution, yu n, of IVP (7)-(26)
converges uniformly on [0,T] to the solution, x, of IVP (4)-(5) as h — 0%
and N — oo, i.e., IzlirglJr o?tang |z(t) — yn n(t)] = 0.

ProoF. Following the steps of the proof of Theorem 1, one can obtain
an inequality almost identical to (15) (just replacing ¢ by 95,0"). In fact,
it is identical to (15), since the arguments of 95, are mesh points, hence
9N can be replaced by V. Therefore the proof of Theorem 1 can be
used to complete the proof of this result. The only statement that needs
a different proof here, (because of the different initial condition) is (25).
Let t € [—[r]n,0) (the case t € [—r, —[r]n) can be proved similarly). The
definitions of ¥}, and w,, and elementary manipulations yield

zh,N (1)
< max {1o) — (bl o foto) = (el + 1)
[S]h +h

+ [io(lsla) — o™ ([sln) A=
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+ o0l +10 = ¥ (sl + 2520

< 2wy(h) + 2l - ¢"e, (27)
which implies (25). [ |

As pointed out in [10], scheme (7)-(8), (and also (7)-(26)) is not appro-
priate in practice for identifying the delay function 7 since the solution,
Yn,N, of the corresponding approximate IVP does not depend continuously
on 7V. Continuity, and for some numerical minimization methods, even
differentiability of the objective function is required to guarantee conver-
gence of a minimization algorithm. One can avoid discretization of the
value of 7V by replacing yu n(t — [TV ([t]n)]n) in (7) by yn n(t — 7V ([t]n))
or yun(t — 7N (t)). Tt is easy to modify the proof of Theorem 1 for the
corresponding schemes, and show uniform convergence of the respective
solutions. But these schemes are not useful in practice since the solution,
in general, is not piecewise linear. Therefore, evaluating the solution be-
tween mesh points (which is needed in the scheme) is difficult. We can get
a numerically simpler approximating scheme by modifying (7) as follows.
Consider

L (o 8) + 0 (@) (¢~ 7 (1))

dt
= (1 v ([80), vun [~ [o(ERN)  (28)

for ¢ € [0,T] with the associated initial condition (8), where 9pyn n(t —
7N (t)) denotes the linear interpolate of the composite function yj, y(- —
7N(-)) using mesh points —r, —[r]s,...,0,h,2h,.... We denote the left-
sided limit of y, n(t) at ¢t by yn ~n(t). As a result of the linearization of
ynn(t—7N(t)), the solution of this IVP is the unique piecewise continuous
function satisfying

pn® = a) =y ) I egm), (29)
ynn(t) = ©N(@),  te[-r0], (30)
a(k+1) = a(k)+¢" (kh)yn n(kh — 7V (kh))
= ™ ((k+ Dh)ynn ((k+ Dh = 7 ((k+ 1)) (31)
+ hf (kh,yn,n(kh),yn N (kh = [o(kR)],)), k=0,1,...,
bk+1) = a(k+1)—¢"(kh)gnn((k+1)h—7V((k+1)h)) (32)
+q™ ((k + DRy n (K + )b — 7N ((k + DR)) , k=0,1,...
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The next theorem shows that this scheme preserves the uniform conver-
gence property of (7)-(8) and (7)-(26).

THEOREM 3. Assume (H1)-(Hj) and let |¢" —qlc = 0, [TV —7]c = 0
and |pN — p|c = 0 as N — oc. Then the solution, yu n, of IVP (28)-(8)
converges uniformly on [0,T] to the solution, x, of IVP ({)-(5) as h — 0%

and N — o0, i.e., hllrglJr Oré]taSXT |z(t) — yn.n ()] = 0.

N — oo

PROOF. Similar to (15), one obtains the estimate

|z(t) — yn,n(t)|
< [0(0) = @™ (0)] + gV (0)|lp(—=7(0)) — ™ (=7 (0))]
+ 19(0) — ¢V (0)lp(=7(0)] + lq() — ¢" ({t]n) |x(t — 7(2))]
+ gV ([t = 7(t) = Dnyn.n(t — 7V (1))

1 [l = sl + la(e) = (D) ) s
+L [ fats = 0(6) = .y (sl = o Gl ds.

The inequality
o (=7(0) — " (=¥ ()] < e (I~ 7V|6) +1g — oVl

replaces (18) in this proof. Define z, v as in the proof of Theorem 1. We
can modify inequality (19) for this case, using an estimate similar to (27),
as follows:

|2 (t = 7(8)) = Dnyn,n(t — 7V (2))]
< 2w, (wT(h) +|r =N+ h) + 2z n(t —T/2+ h).
The rest of the proof can be finished as in the proof of Theorem 1. [ ]

We conclude this paper by noting that the results of this paper can be
generalized in a straightforward manner to NFDEs of the form

%(w(w + ﬁ_njqiu)w(t —7it) = f(Lo), 2t = a1 (1), .. 2t = 0 (1)) ).

(See [5] for the generalization of Lemma 1 for the several delay case.)
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