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2information is available via measurements (X0; X1; : : : ; Xl) of the solu-tion, x(t), at disrete time values (t0; t1; : : : ; tl). The goal is to �nd theparameter value, whih minimizes the least squares �t-to-data riterionJ() =Pli=0 jx(ti; )�Xij2, where  belongs to an admissible set � on-tained in the parameter spae �. (Denote this problem by P). The generalmethod onsists of the following steps:Step 1) First take �nite dimensional approximations of the parameters,N , (i.e., N 2 �N � �N � �, dim�N <1, N !  as N !1).Step 2) Consider a sequene of approximate initial value problems orre-sponding to a disretization of IVP (1)-(2) for some �xed parameter N 2�N with solutions yM (�; N ) satisfying yM (t; N )! x(t; ) as N;M !1,uniformly on ompat time intervals, and N 2 �N .Step 3) De�ne the least square minimization problems (PN;M): for eahN;M = 1; 2; : : :, i.e., �nd N;M 2 �N � �N , whih minimizes the leastsquares �t-to-data riterion JN;M (N ) = Pli=0 jyM (ti; N ) � Xij2, N 2�N . Often �N is the projetion of � to �N , and we restrit our disussionto this ase.Step 4) Assuming that � is a ompat subset of �, argue, that thesequene of solutions, N;M (N;M = 1; 2; : : :), of the �nite dimensionalminimization problems PN;M , has a onvergent subsequene with limit� 2 �.Step 5) Show that � is the solution of the minimization problem P .Note that Steps 4 and 5 an be argued without using the partiularapproximation method, using only a ompatness argument and Step 2above (see [13℄).In this paper we apply this general framework for identifying parametersin IVPs orresponding to neutral funtional di�erential equations (NFDEs)of the formddt�x(t) + q(t)x(t � �(t))� = f�t; x(t); x(t � �(t))�; t 2 [0; T ℄; (3)and initial ondition (2).Our goal is the identi�ation of q, � in (3), and the assoiated initialfuntion, '. Note that other parameters in the right hand side of (3) anbe identi�ed in a similar way, but for simpliity in the disussion we restritour attention to these three parameters.Assuming that the parameters q, � and ' are ontinuous funtions,we use � � C([0; T ℄; R) � C([0; T ℄; R) � C([�r; 0℄; Rn) as our parameterspae. To follow the general identi�ation method desribed above, �rstwe approximate q, � and ' (in supremum norm) by (�nite dimensional)funtions qN , �N and 'N . In pratie (see [9℄ and [10℄) we use linear splineapproximations (see e.g. [14℄).



3In Setion 2 we de�ne several Euler-type approximation shemes (see (7)-(8), (7)-(26) and (28)-(8) below) for NFDEs of the form (3), using equationswith pieewise onstant arguments (EPCAs), and show that eah shemesatis�es the onvergene property required in Step 2 of the general method.For orresponding numerial studies we refer to [9℄ and [10℄, where severalexamples illustrate the appliability of the identi�ation method de�nedin this paper. See also [4℄ and [11℄ for identi�ation methods based onEuler-type approximation shemes, and [12℄ and the referenes therein fornumerial approximation methods for NFDEs.Note that EPCAs were used �rst in [5℄ to obtain numerial approxima-tion shemes and to prove the onvergene of the approximation methodfor linear delay and neutral di�erential equations with onstant delays, andlater in [6℄ for nonlinear delay equations with state-dependent delays. AnEPCA-based identi�ation sheme was studied in [8℄ for a lass of delayequations with state-dependent delays.2. CONVERGENCE RESULTSConsider the vetor NFDEddt�x(t) + q(t)x(t � �(t))� = f�t; x(t); x(t � �(t))�; t 2 [0; T ℄ (4)with initial ondition x(t) = '(t); t 2 [�r; 0℄; (5)We make the following assumptions:(H1) T > 0, q 2 C([0; T ℄; R), � 2 C([0; T ℄; [0;1)), ' 2 C([�r; 0℄; Rn),(H2) f 2 C([0; T ℄ � Rn � Rn; Rn) is loally Lipshitz-ontinuous in itsseond and third arguments, i.e., for every M > 0 there exists L =L(M) � 0 suh that jf(t; x; y)� f(t; �x; �y)j � L�jx� �xj+ jy� �yj�, fort 2 [0; T ℄, x; �x; y; �y 2 Rn, jxj, j�xj, jyj, j�yj �M ,(H3) � 2 C([0; T ℄; R) is suh that 0 < �(t) for t 2 [0; T ℄,(H4) r is a positive onstant satisfying �(t) � r and �(t) � r for t 2 [0; T ℄.Here, and throughout this paper j � j denotes a vetor norm on Rn, andjqjC , j� jC and j'jC denote the respetive supremum norms on C([0; T ℄; R),C([0; T ℄; R) and C([�r; 0℄; Rn).



4 Under assumptions (H1){(H4) IVP (4)-(5) has a unique solution (see[7℄).Throughout this paper we shall use the notation [t℄h � [t=h℄h, where [�℄ isthe greatest integer funtion. For later referene we mention an elementaryproperty of this funtion: t� h < [t℄h � t: (6)Let h be a positive number, qN , �N and 'N are ontinuous funtions(approximating q, � and ' as N ! 1), and 0 < �N (t) � r for t 2 [0; T ℄.Following the ideas of [5℄, we assoiate the following NFDE with pieewiseonstant arguments to (4) and to the parameters qN , �N and 'N :ddt�yh;N(t) + qN ([t℄h)yh;N (t� [�N ([t℄h)℄h)�= f�[t℄h; yh;N ([t℄h); yh;N([t℄h � [�([t℄h)℄h)� (7)for t 2 [0; T ℄, with the initial onditionyh;N(t) = 'N (t); t 2 [�r; 0℄: (8)The subsript h and N of yh;N(t) emphasizes that yh;N(t) is the solution of(7) orresponding to the disretization parameter h and parameter valuesqN , �N and 'N . By a solution of IVP (7)-(8) we mean a funtion yh;N :[�r; T ℄ ! Rn, whih is de�ned on [�r; 0℄ by (8), suh that the funtiont 7! yh;N(t) + qN ([t℄h)yh;N(t � [�N ([t℄h)℄h) is ontinuous on [0; T ℄, andits derivative exists at eah point t 2 [0; T ), with the possible exeptionof the points kh (k = 0; 1; 2; : : :) where �nite one-sided derivatives exist,and the funtion yh;N satis�es (7) on eah interval [kh; (k + 1)h) \ [0; T ℄(k = 0; 1; 2; : : :). Note that yh;N (t) is, in general, only right-ontinuous atpositive mesh points.It is easy to see (by using the method of steps) that IVP (7)-(8) has aunique solution de�ned on [0; T ℄. Introdue the notations a(k) � yh(kh)and b(k) � lims!kh� yh;N (t) for the value of the solution and its left-sidedlimit at mesh points, respetively. Integrating (7) from kh to t and thentaking the limit as t! (k + 1)h+ yields the reursive formula:a(k + 1) = a(k) + qN (kh)a(k � [�N (kh)=h℄)� qN ((k + 1)h)a(k + 1� [�N ((k + 1)h)=h℄) (9)+ hf(kh; a(k); a(k � [�(kh)=h℄)); for k = 0; 1; : : : ;a(k) = 'N (kh); for k = 0;�1; : : : : � r � kh � 0: (10)



5The ontinuity of yh;N(t) + qN ([t℄h)yh;N (t� [�N ([t℄h)℄h) and ' implyb(k + 1) = a(k + 1)� qN (kh)b�k + 1� ��N (kh)=h�� (11)+ qN((k + 1)h)a�k + 1� ��N ((k + 1)h)=h�� ; k = 0; 1; : : : ;b(k) = 'N (kh); for k = 0;�1; : : : ; �r � kh � 0: (12)Note that if q(t) and �(t) are onstant funtions, then a(k) = b(k), i.e.,yh;N (t) is ontinuous at mesh points.These formulas show that the omputation of the solution of IVP (7)-(8) at mesh points is an easy numerial task, moreover the reursive for-mulas use values of the solution and the initial funtion only at meshpoints. Sine the right hand side of (7) is pieewise onstant, the funtionyh;N (t)+qN ([t℄h)yh;N (t� [�N ([t℄h)℄h) is pieewise linear, but unfortunatelyyh;N (t), in general, is not linear between mesh points, therefore omputingthe solution of IVP (7)-(8) between mesh points is numerially diÆult.Consequently, this sheme is reommended for use here if we need the so-lution only at mesh points, i.e., if the measurements are taken at meshpoints. Note that in many ases this is not a restritive assumption.Next we state a slightly generalized version of Lemma 3.2 from [5℄.Lemma 1. Let a > 0, b � 0, � � 0, � > 0,  � maxf�; �g, and g :[0; T ℄! [0;1) be ontinuous and nondereasing. Let u : [�; T ℄! [0;1)be ontinuous exept at �nite many points 0 < t1 < t2 < : : : < tm � T ,where �nite one-sided limits exist, and satisfy the inequalityu(t) � g(t) + bu(t� �) + a Z t0 u(s� �) ds; t 2 [0; T ℄:Then u(t) � d(t)et for t 2 [0; T ℄, where  is the unique positive solution ofbe�� + ae�� = , andd(t) � max� g(t)1� be�� ; max��s�0 e�su(s)� ; t 2 [0; T ℄:Note that in [5℄ this result was formulated for the ase when u(t) is on-tinuous. The proof for this ase is an obvious modi�ation of that of theontinuous ase, and therefore omitted here.The next theorem shows that the approximation sheme (7)-(8) has theuniform onvergene property under a double limiting proess, as requiredin Step 2 of the general identi�ation method.Theorem 1. Assume (H1){(H4) and let jqN � qjC ! 0, j�N � � jC ! 0and j'N ! 'jC ! 0 as N ! 1. Then the solution, yh;N , of IVP (7)-(8)



6onverges uniformly on [0; T ℄ to the solution, x, of IVP (4)-(5) as h! 0+and N !1, i.e., limh!0+N!1 max0�t�T jx(t) � yh;N(t)j = 0.Proof. De�ne the onstants M � maxnmax�r�t�T jx(t)j; jqjCo + 1,and �� � min0�t�T �(t). (Note that �� > 0.) Without loss of generality wean assume that jqN � qjC < 1, j'N �'jC < 1, and j�N � � jC < ��=2 for allN . Let 0 < Th;N � T be the largest number suh that jyh;N (t)j � M fort 2 [0; Th;N). (Th;N is well-de�ned sine j'N (0)j < M by our assumptions.)Integrating (4) and (7) from 0 to t and using the respetive initial onditionswe getx(t)+q(t)x(t��(t)) = '(0)+q(0)'(��(0))+Z t0 f�s; x(s); x(s��(s))� ds;(13)andyh;N(t) + qN ([t℄h)yh;N (t� [�N ([t℄h)℄h) = 'N (0) + qN (0)'N (�[�N (0)℄h)+ Z t0 f�[s℄h; yh;N([s℄h); yh;N ([s℄h � [�([s℄h)℄h)� ds: (14)Using elementary estimates and (H2), with L = L(M), (13) and (14) implyfor t 2 [0; Th;N ℄,jx(t) � yh;N(t)j� j'(0)� 'N (0)j+ jqN (0)jj'(��(0)) � 'N (�[�N (0)℄h)j+ jq(0)� qN (0)jj'(��(0))j + jq(t)� qN ([t℄h)jjx(t� �(t))j+ jqN ([t℄h)jx(t � �(t)) � yh;N(t� [�N ([t℄h)℄h)j+L Z t0 �js� [s℄hj+ jx(s)� yh;N ([s℄h)j�ds (15)+L Z t0 jx(s� �(s)) � yh;N([s℄h � [�([s℄h)℄h)j ds:We introdue the following notations for u � 0:!x(u) � supfjx(s1)� x(s2)j : js1 � s2j � u; s1; s2 2 [�r; T ℄g;!� (u) � supfj�(s1)� �(s2)j : js1 � s2j � u; s1; s2 2 [0; T ℄g;!q(u) � supfjq(s1)� q(s2)j : js1 � s2j � u; s1; s2 2 [0; T ℄g:Using these notations and (6) we have the following estimates for t 2 [0; T ℄:jq(t)� qN ([t℄h)j � !q(h) + jq � qN jC ; (16)



7and j�(t)� [�N ([t℄h)℄hj � !� (h) + j� � �N jC + h: (17)Similarly, the de�nition of !x and inequalities (6) and (17) implyj'(��(0))�'N (�[�N (0)℄h)j � !x�!� (h)+j���N jC+h�+j'�'N jC ; (18)andjx(t� �(t))� yh;N(t� [�N ([t℄h)℄h)j � !x�!� (h) + j� � �N jC + h�+ jx(t� [�N ([t℄h)℄h)� yh;N (t� [�N ([t℄h)℄h)j: (19)Inequality (15), together with relations (6), (16) { (19), and de�nition ofM yield for t 2 [0; Th;N ℄:jx(t) � yh;N(t)j� (M + 1)j'� 'N jC + 2M jq � qN jC +M!q(h)+ 2M!x�!� (h) + j� � �N jC + h�+ M jx(t� [�N ([t℄h)℄h)� yh;N(t� [�N ([t℄h)℄h)j+ LTh+ L Z t0 �jx(s) � x([s℄h)j+ jx([s℄h)� yh;N([s℄h)j� ds+ L Z t0 jx(s � �(s))� x([s℄h � [�([s℄h)℄h)j ds (20)+ L Z t0 jx([s℄h � [�([s℄h)℄h)� yh;N([s℄h � [�([s℄h)℄h)j ds:De�ne the funtions zh;N(t) � max�r�s�t jx(s) � yh;N(s)j and gh;N(t) �(M +1)j'�'N jC +2M jq� qN jC +M!q(h)+ 2M!x�!� (h)+ j� � �N jC +h�+LTh+LR t0�jx(s)�x([s℄h)j+jx(s� �(s))�x([s℄h � [�([s℄h)℄h)j�ds fort 2 [�r; T ℄ and t 2 [0; T ℄, respetively. Using this notation (20) impliesjx(t)� yh;N(t)j � gh;N(t) +Mzh;N(t� [�N ([t℄h)℄h) + 2L Z t0 zh;N(s) ds (21)for t 2 [0; Th;N ℄. Assumption (H3), the assumed inequality j���N jC � ��=2,and relation (6) yieldt� [�N ([t℄h)℄h � t� �N ([t℄h) + h � t� ��=2 + h: (22)



8Combining (21), (22) and the inequality zh;N(t) � j'�'N jC for t 2 [�r; 0℄,we getzh;N(t) � gh;N(t)+Mzh;N(t���=2+h)+2L Z t0 zh;N(s) ds; t 2 [0; Th;N ℄:Applying Lemma 1 (for h < ��=2), we obtain the estimatezh;N(t) � dh;N (T )ehT ; t 2 [0; Th;N ℄; (23)where h > 0 is the unique positive solution of hMe�h(��=2�h) +2L = h,anddh;N (t) � max� gh;N (t)1�Me�h(��=2�h) ; max�r�s�0 e�hszh;N(s)� ; t 2 [0; T ℄:Relation (23) establishes the theorem if we show that (i) h onverges toa limit,  > 0, as h ! 0+, and (ii) lim h!0+N!1 dh;N (T ) = 0. This followssine (23) now yields that jx(t)�yh;N (t)j < 1, and hene jyh;N(t)j < M fort 2 [0; Th;N ℄ and for small enough h > 0 and large enough N . Consequentlythis implies that Th;N = T for suh h and N . It is easy to see that thede�nition of h yields h ! , as h! 0+, where  > 0 is the unique positivesolution of Me���=2 + 2L = . Using the onvergene of h, (ii) follows ifwe show that limh!0+N!1 gh;N(T ) = 0 (24)and limh!0+N!1 max�r�s�0 zh;N (s) = 0: (25)The de�nition of gh;N(t) implies (24), sine x, q and ' are uniformly on-tinuous funtions on [�r; T ℄, [0; T ℄ and [�r; 0℄, respetively. Therefore,!x(h) ! 0, !q(h) ! 0 and !� (h) ! 0 as h ! 0+, and (6) implies that[s℄h ! s, [�([s℄h)℄h ! �(s), as h ! 0+. The Lebesgue's Dominated Con-vergene Theorem implies that the integral in gh;N(T ) onverges to zero ash! 0+. Finally, the inequality 0 � zh;N(s) � j'�'N jC , s 2 [�r; 0℄ yields(25), whih ompletes the proof of the theorem.The diÆulty in omputing the solution of the IVP (7)-(8) is a onse-quene of the fat, that yh;N(t) + qN ([t℄h)yh;N(t� [�N ([t℄h)℄h) is pieewiselinear but the initial funtion, 'N is not neessarily linear between meshpoints. However, if we use linear interpolation for values of the initial fun-tion between mesh points, then the linearity of the initial funtion will be



9preserved for yh;N (t) for positive t. Let  : [r; 0℄ ! Rn be a ontinuousfuntion, 0 < h < r, and de�ne(#h )(s) � 8><>:  (0); s = 0; ([s℄h) [s℄h+h�sh +  ([s℄h + h) s�[s℄hh ; s 2 [[s℄h; [s℄h + h); (�r)�[r℄h�sr�[r℄h +  (�[r℄h) s+rr�[r℄h ; s 2 [�r;�[r℄h);i.e., #h denotes the linear interpolate of the funtion  , using mesh points�r;�[r℄h;�[r℄h + h; : : : ;�h; 0. We onsider the modi�ed initial onditionyh;N (t) = (#h'N )(t); t 2 [�r; 0℄: (26)Clearly, IVP (7)-(26) has a unique solution, where the values of the solutionat mesh points and its left-sided limits, a(k) and b(k), are de�ned by thereursive formulas (9)-(12), (i.e., they are idential to those of IVP (7)-(8)),and the solution, yh;N , is linear on the intervals [kh; (k + 1)h). Note thatthe values of the initial funtion between mesh points are atually not usedin omputing the sequenes a(k) and b(k). If approximate solution valuesbetween mesh points are not needed, then it is enough to generate thesequene a(k), whih an be done without generating b(k). The followingtheorem shows that this modi�ed sheme has the same uniform onvergeneproperty as sheme (7)-(8).Theorem 2. Assume (H1){(H4) and let jqN � qjC ! 0, j�N � � jC ! 0and j'N ! 'jC ! 0 as N !1. Then the solution, yh;N , of IVP (7)-(26)onverges uniformly on [0; T ℄ to the solution, x, of IVP (4)-(5) as h! 0+and N !1, i.e., limh!0+N!1 max0�t�T jx(t)� yh;N (t)j = 0.Proof. Following the steps of the proof of Theorem 1, one an obtainan inequality almost idential to (15) (just replaing 'N by #h'N ). In fat,it is idential to (15), sine the arguments of #h'N are mesh points, hene#h'N an be replaed by 'N . Therefore the proof of Theorem 1 an beused to omplete the proof of this result. The only statement that needsa di�erent proof here, (beause of the di�erent initial ondition) is (25).Let t 2 [�[r℄h; 0) (the ase t 2 [�r;�[r℄h) an be proved similarly). Thede�nitions of #h and !', and elementary manipulations yieldzh;N (t)� max�r�s�t����'(s)� '([s℄h)��� [s℄h + h� sh + ���'(s) � '([s℄h + h)���s� [s℄hh+ ���'([s℄h)� 'N ([s℄h)��� [s℄h + h� sh



10 + ���'([s℄h + h)� 'N ([s℄h + h)���s� [s℄hh �� 2!'(h) + 2j'� 'N jC ; (27)whih implies (25).As pointed out in [10℄, sheme (7)-(8), (and also (7)-(26)) is not appro-priate in pratie for identifying the delay funtion � sine the solution,yh;N , of the orresponding approximate IVP does not depend ontinuouslyon �N . Continuity, and for some numerial minimization methods, evendi�erentiability of the objetive funtion is required to guarantee onver-gene of a minimization algorithm. One an avoid disretization of thevalue of �N by replaing yh;N(t � [�N ([t℄h)℄h) in (7) by yh;N(t� �N ([t℄h))or yh;N (t � �N (t)). It is easy to modify the proof of Theorem 1 for theorresponding shemes, and show uniform onvergene of the respetivesolutions. But these shemes are not useful in pratie sine the solution,in general, is not pieewise linear. Therefore, evaluating the solution be-tween mesh points (whih is needed in the sheme) is diÆult. We an geta numerially simpler approximating sheme by modifying (7) as follows.Considerddt�yh;N (t) + qN ([t℄h)~#hyh;N (t� �N (t))�= f�[t℄h; yh;N([t℄h); yh;N ([t℄h � [�([t℄h)℄h)� (28)for t 2 [0; T ℄ with the assoiated initial ondition (8), where ~#hyh;N(t ��N (t)) denotes the linear interpolate of the omposite funtion yh;N(� ��N (�)) using mesh points �r;�[r℄h; : : : ; 0; h; 2h; : : :. We denote the left-sided limit of yh;N(t) at t by byh;N(t). As a result of the linearization ofyh;N(t��N (t)), the solution of this IVP is the unique pieewise ontinuousfuntion satisfyingyh;N(t) = a(k) t� khh + b(k + 1)(k + 1)h� th ; t 2 [kh; (k + 1)h); (29)yh;N(t) = 'N (t); t 2 [�r; 0℄; (30)a(k + 1) = a(k) + qN (kh)yh;N(kh� �N (kh))� qN ((k + 1)h)yh;N�(k + 1)h� �N ((k + 1)h)� (31)+ hf (kh; yh;N(kh); yh;N (kh� [�(kh)℄h)) ; k = 0; 1; : : : ;b(k + 1) = a(k + 1)� qN (kh)byh;N�(k + 1)h� �N ((k + 1)h)� (32)+qN ((k + 1)h)yh;N�(k + 1)h� �N ((k + 1)h)� ; k = 0; 1; : : :



11The next theorem shows that this sheme preserves the uniform onver-gene property of (7)-(8) and (7)-(26).Theorem 3. Assume (H1){(H4) and let jqN � qjC ! 0, j�N � � jC ! 0and j'N ! 'jC ! 0 as N !1. Then the solution, yh;N , of IVP (28)-(8)onverges uniformly on [0; T ℄ to the solution, x, of IVP (4)-(5) as h! 0+and N !1, i.e., limh!0+N!1 max0�t�T jx(t)� yh;N (t)j = 0.Proof. Similar to (15), one obtains the estimatejx(t) � yh;N(t)j� j'(0)� 'N (0)j+ jqN (0)jj'(��(0)) � 'N (��N (0))j+ jq(0)� qN (0)jj'(��(0))j + jq(t)� qN ([t℄h)jjx(t � �(t))j+ jqN ([t℄h)jx(t� �(t)) � ~#hyh;N (t� �N (t))j+L Z t0 �js� [s℄hj+ jx(s) � yh;N([s℄h)j�ds+L Z t0 jx(s� �(s)) � yh;N([s℄h � [�([s℄h)℄h)j ds:The inequalityj'(��(0)) � 'N (��N (0))j � !x�j� � �N jC�+ j'� 'N jCreplaes (18) in this proof. De�ne zh;N as in the proof of Theorem 1. Wean modify inequality (19) for this ase, using an estimate similar to (27),as follows:jx(t� �(t)) � ~#hyh;N(t� �N (t))j� 2!x�!� (h) + j� � �N jC + h�+ 2zh;N(t� ��=2 + h):The rest of the proof an be �nished as in the proof of Theorem 1.We onlude this paper by noting that the results of this paper an begeneralized in a straightforward manner to NFDEs of the formddt�x(t) + mXi=1 qi(t)x(t � �i(t))� = f�t; x(t); x(t � �1(t)); : : : ; x(t� �p(t))�:(See [5℄ for the generalization of Lemma 1 for the several delay ase.)ACKNOWLEDGEMENTThis researh was supported in part by the Air Fore OÆe of Sienti�Researh under Grant AFOSR F49620-93-1-0280
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