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1. Introduction

This paper considers the asymptotic limits of solutions of

z(n+ 1; ξ) = g(n) + ξ +

n∑
j=0

H(n, j)z(j; ξ), n ∈ Z+; z(0; ξ) = ξ, (1)

where g is a fixed function for which limn→∞ g(n) exists. The solution of (1)
can be expressed as z(n; ξ) = w(n) + y(n; ξ) where w solves w(n + 1) = g(n) +∑n

j=0H(n, j)w(j) for n ∈ Z+ and w(0) = 0. It is assumed that limn→∞w(n) exists

(sufficient conditions on H which would ensure this can be found for example in
[4, 6, 7]). Then investigation of limn→∞ z(n; ξ) reduces to studying the asymptotic
limit of y(·; ξ), the solution of the homogeneous problem

y(n+ 1; ξ) = ξ +

n∑
j=0

H(n, j)y(j; ξ), n ∈ Z+; y(0; ξ) = ξ. (2)

Equation (2) is said to have asymptotic equilibrium if limn→∞ y(n; ξ) exists for
every vector ξ, and limn→∞ y(n; ξ) 6= 0 whenever ξ 6= 0. Clearly the equation has
asymptotic equilibrium if and only if M := limn→∞ Y (n) exists and M is invertible,
where Y (n+ 1) = I +

∑n
j=0H(n, j)Y (j) for n ∈ Z+ and Y (0) = I.

In this note, an explicit formula for limn→∞ y(n; ξ) is derived if the kernel has the
form H(n, j) =

∑∞
k=1 hk(n, j)Qk, and the initial condition satisfies Qpξ 6= 0 but
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Qp+1ξ = 0. In particular if Q is nilpotent, the limiting matrix M can be explicitly
determined and shown to be invertible, so that (2) has asymptotic equilibrium.

One motivation for this work was to explore the connection between the ap-
proaches used in [1, 2] and [5], for studying asymptotically periodic solutions of
discrete Volterra equations.

2. Main Result

Let Z+ = {0, 1, 2, . . .} denote the set of non-negative integers, and K either R or

C. If a = (ai) is a vector in Kd, ‖a‖ =
√∑d

i=0 |ai|2. Kd×d is the space of all d× d
matrices with entries in K, and the zero and identity matrices are denoted by 0

and I respectively. If A = (Aij) ∈ Kd×d, ‖A‖ =
√∑d

i=0

∑d
j=0 |Aij |2.

Also `∞(Z+;Kd) denotes the set of all bounded f : Z+ → Kd, and `∞c (Z+;Kd)
the set of all f ∈ `∞(Z+;Kd) for which limn→∞ f(n) =: f(∞) exists. We employ
some terminology for Volterra kernels which is similar to that used in [3, Ch. 9].

Definition 2.1 . A mapping H : Z+ × Z+ → Kd×d is a Volterra kernel H if
H(n, j) = 0 for all j > n ≥ 0. H is called a Volterra kernel of type `∞c if in addition

(i) supn≥0

∑n
j=0 ‖H(n, j)‖ is finite;

(ii) LH := limn→∞
∑n

j=0H(n, j) exists;

(iii) limn→∞H(n, j) = H∞(j) exists for all j ∈ Z+.

It is convenient to use the notation (H ?f)(n) :=
∑n

j=0H(n, j)f(j) for n ≥ 0. It

is shown in [7, Thm 3.7] that if H is of type `∞c and f ∈ `∞c (Z+;Kd), then

lim
n→∞

(H ? f)(n) = LHf(∞) +

∞∑
j=0

H∞(j)[f(j)− f(∞)]. (3)

Theorem 2.2 . Suppose that

(a) ξ ∈ Kd, Q ∈ Kd×d, Qpξ 6= 0 and Qp+1ξ = 0 for some integer p ≥ 1,
(b) {hk} is a sequence of Volterra kernels hk : Z+ × Z+ → K,
(c) for each (n, j) ∈ Z+ × Z+, H(n, j) =

∑∞
k=1 hk(n, j)Qk converges absolutely,

(d) limn→∞
∑n

j=0 h1(n, j) exists,

(e) if p ≥ 2, hk is of type `∞c for all 2 ≤ k ≤ p.

Then the solution of (2) has the form y(n; ξ) = ξ +
∑p

i=1 ηi(n)Qiξ for all n ≥ 0,
where ηi can be calculated recursively and limn→∞ ηi(n) =: ηi(∞) exists, for each
i ∈ {1, . . . , p}.

Proof . It is convenient to set h0(n, j) = 1 if j = 0, and h0(n, j) = 0 if
1 ≤ j ≤ n. Substitution of this and (c) into (2) leads to y(n + 1; ξ) =∑n

j=0

∑∞
k=0 hk(n, j)Qky(j; ξ) for all n ≥ 0. It is easily shown by induction that

the solution can be expressed in the required form: indeed if y(j) =
∑p

s=0 ηs(j)Q
sξ

with η0(j) = 1 for all 0 ≤ j ≤ n,

y(n+ 1; ξ) =

n∑
j=0

∞∑
k=0

p∑
s=0

hk(n, j)ηs(j)Q
k+sξ.
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Because of the absolute convergence of
∑∞

k=1 hk(n, j)Qk,

p∑
s=0

∞∑
k=0

|hk(n, j)||ηs(j)|‖Qk+sξ‖ ≤
p∑

s=0

( ∞∑
k=0

|hk(n, j)|‖Qk‖
)
|ηs(j)|‖Qsξ‖

is finite. Thus we can interchange the order of summation in

∞∑
k=0

p∑
s=0

hk(n, j)ηs(j)Q
k+sξ =

p∑
s=0

∞∑
k=0

hk(n, j)ηs(j)Q
k+sξ

=

p∑
s=0

p−s∑
k=0

hk(n, j)ηs(j)Q
k+sξ =

p∑
s=0

p∑
r=s

hr−s(n, j)ηs(j)Q
rξ.

Because the last summation is over a finite range, we see that

y(n+ 1; ξ) =

p∑
r=0

( r∑
s=0

n∑
j=0

hr−s(n, j)ηs(j)

)
Qrξ.

Since {ξ,Qξ, . . . , Qpξ} is a linearly independent subset of Kd, we deduce that y(n+
1) =

∑p
r=0 ηr(n+1)Qrξ, with ηr(n+1) =

∑r
s=0

∑n
j=0 hr−s(n, j)ηs(j). Thus η0(n+

1) =
∑n

j=0 h0(n, j)η0(j) = 1, as it should be. For r ≥ 1, we obtain

ηr(n+ 1) = h0(n, 0)ηr(0) +

r−1∑
s=0

n∑
j=0

hr−s(n, j)ηs(j),

so that η1(n+ 1) = 1 +
∑n

j=0 h1(n, j) and

ηr(n+ 1) = 1 +

n∑
j=0

hr(n, j) +

r−1∑
s=1

(hr−s ? ηs)(n), r ≥ 2.

Thus once the limits η1(∞), . . . , ηr−1(∞) have been determined, we can deduce an
expression for ηr(∞) using (3). �

Corollary 2.3 . Suppose that hypotheses (b), (c), (d), and (e) in Theorem 2.2
are true, and

(a′) ξ ∈ Kd, Q ∈ Kd×d, Qp 6= 0 and Qp+1 = 0 for some integer p ≥ 1.

Then the solution of (2) has the form y(n; ξ) = ξ +
∑p

i=1 ηi(n)Qiξ for all n ≥ 0,
where ηi can be calculated recursively and limn→∞ ηi(n) =: ηi(∞) exists, for each
i ∈ {1, . . . , p}. Also M defined by Mξ := limn→∞ y(n; ξ), exists, is invertible and
given by M = I +

∑p
i=1 ηi(∞)Qi.

Corollary 2.4 . Suppose that hypotheses (b), (c), and (d) in Theorem 2.2 are
true, and

(a′′) ξ ∈ Kd, Q ∈ Kd×d, Q 6= 0 and Q2 = 0 for some integer p ≥ 1.

Then the solution of (2) has the form y(n; ξ) = ξ +
∑n−1

j=0 h(n − 1, j)Qξ for all

n ≥ 0, limn→∞ y(n; ξ) = Mξ, where M := I + limn→∞
∑n

j=0 h(n, j)Q is invertible.
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3. Examples

In this section we examine some examples of the form

z(n+ 1; ξ) = ξ + β(n)e+

n∑
j=0

h(n, j)Qz(j; ξ), n ∈ Z+; z(0; ξ) = ξ, (4)

It is supposed that Qe = 0, in which case the solution has the form z(n; ξ) =
β(n)e+ y(n; ξ) for n ≥ 1, where y(·; ξ) is the solution of the equation

y(n+ 1; ξ) = ξ +

n∑
j=0

h(n, j)Qy(j; ξ), n ∈ Z+; y(0; ξ) = ξ, (5)

which is a special case of (2). We also assume that β is in `∞c (Z+;K), and that h
is a Volterra kernel for which limn→∞

∑n
j=0 h(n, j) exists.

The particular examples in this section have been constructed by applying [5,
Lemma 3] to examples of discrete Volterra equations discussed in [1, 2].

3.1 Examples with Q 6= 0 and Q2 = 0

Assume in addition that Q 6= 0, Q2 = 0. Then Corollary 2.4 provides the exact
solution z(n; ξ) = β(n)e + ξ +

∑n−1
j=0 h(n − 1, j)Qξ for n ≥ 1 and the asymptotic

limit limn→∞ z(n; ξ) = β(∞)e + Mξ, where M = I + limn→∞
∑n

j=0 h(n, j)Q is
invertible.

After transforming the example in [1], one obtains (4) with

h(n, j) =
1

7

(−1)j−1

2j−1

{
1−

(
−1

6

)n−j+1}
, β(n) = −3

7

[
1−

(
−1

6

)n]
, (6)

Q =

(
1 1
−1 −1

)
, e =

(
1
−1

)
. (7)

Here β(∞) = −3/7 and limn→∞
∑n

j=0 h(n, j) = −4/21, so that

M =
1

21

(
17 −4
4 25

)
.

The particular solution considered in [1] corresponds to ξ =
(
2 1
)T

and z(∞; ξ) =

Mξ − 3
7e =

(
1 2
)T

.
A similar example can be derived from [2, Example 1]). Here e and Q remain as

in (7), but

h(n, j) =
1

14

(−1)j−1

2j−1

{
1−

(
−1

6

)n−j+1}
, β(n) = − 3

14

[
1−

(
−1

6

)n]
,

which are just half the expressions in (6). Clearly β(∞) = −3/14 and
limn→∞

∑n
j=0 h(n, j) = −2/21. Hence

M =
1

21

(
19 −2
21 23

)
.
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The particular solution considered in [2, Example 1] corresponds to ξ =
(
3/2 3/2

)T
and z(∞; ξ)) = Mξ − 3

14e =
(
1 2
)T

.

3.2 Example with Q2 = Q3 6= 0

It is now assumed that Q 6= 0 and Q2 = Q3 6= 0. Then Theorem 2.2 says that
z(n; ξ)→ β(∞)e+ ξ + limn→∞

∑n
j=0 h(n, j)Qξ as n→∞, provided Q2ξ = 0.

The transformation of [2, Example 3] yields the problem of h and β being as in
(6), and

Q =

 1 1 0
−1 −1 0
0 1 1

 , e =

 1
−1
1

 ,

so that Qe = 0 and

Q2 = Q3 =

 0 0 0
0 0 0
−1 0 1

 .

We note that limn→∞ z(n; ξ) = −3/7e+M0ξ provided Q2ξ = 0 (which is equivalent
to ξ1 = ξ3), with

M0 =
1

21

17 −4 0
4 25 0
0 −4 17


The particular solution considered in [2, Example 3] corresponds to ξ =

(
2 1 2

)T
and z(∞; ξ) = M0ξ − 3

7e =
(
1 2 1

)T
; also Q2ξ = 0.

What happens for initial values obeying Q2ξ 6= 0? Since its minimal polynomial is
cubic, {I,Q,Q2} is a linearly independent set in R3×3. We follow the method used
to prove Theorem 2.2, and look for a solution Y (n) = η0(n)I + η1(n)Q+ η2(n)Q2

for n ∈ Z+ of the matrix equation Y (n + 1) = I +
∑n

j=0 h(n, j)Q with Y (0) = I.
By substituting the solution into this,

Y (n+ 1) = I +

n∑
j=0

h(n, j)η0(j)Q+

n∑
j=0

h(n, j)[η1(j) + η2(j)]Q2,

and the initial conditions η0(0) = 1, η1(0) = 0, η2(0) = 0. Hence η0(n) ≡ 1,
η1(n+ 1) =

∑n
j=0 h(n, j) with η1(0) = 0, and

η2(n+ 1) =

n∑
j=0

h(n, j)η1(j) +

n∑
j=0

h(n, j)η2(j), η2(0) = 0. (8)

Though η1 is explicitly known, this is not true of either η2 or

Y (n) =

1 + η1(n) η1(n) 0
−η1(n) 1− η1(n) 0
−η2(n) η1(n) 1 + η1(n) + η2(n)

 .
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It is easily checked that h is of type `∞c and

lim sup
n→∞

n∑
j=m

|h(n, j)| ≤ 7

6
lim sup
n→∞

n+1∑
j=m+1

1

2j
=

7

6

(
1
2

)m+1

1− 1
2

m→∞−−−−→ 0.

Hence it can be concluded from [4, Thm 3.1] that limn→∞ η2(n) =: η2(∞) exists.
Though we are not able to compute its value, we infer that M = limn→∞ Y (n)
exists with

M = M0 + η2(∞)Q2 =
1

21

 17 −4 0
4 25 0

−21η2(∞) −4 21η2(∞) + 17

 .

from which we deduce that detM = 17
21 + η2(∞). Hence M would be invertible if

η2(∞) 6= −17
21 .

In order to ascertain whether M is invertible or not, it may be easier to consider
p(n) = 1 + η1(n) + η2(n) for n ≥ 0: p indeed satisfies the initial-value problem
p(n + 1) = 1 +

∑n
j=0 h(n, j)p(j) and p(0) = 1. Again [4, Thm 3.1] implies that

p(∞) := limn→∞ p(n) exists. M is invertible if and only if p(∞) 6= 0.

4. Conclusions

Motivated by the study of asymptotic periodic solutions, this note attempts to
investigate systematically a special class of discrete Volterra equations which have
asymptotic equilibrium. To our knowledge, there is no such systematic investigation
for a wider class of discrete Volterra equations. It seems to be a challenging project
to study the asymptotic equlibria of a general discrete Volterra system and to
utilize those results to analyse the existence of asymptotic periodic solutions.
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[4] I. Győri and L. Horváth, Asymptotic representation of the solutions of linear Volterra difference
equations, Adv. Difference Equ. (2008), pp. Art. ID 932831, 22. Available at http://www.hindawi.
com/journals/ade/2008/932831.html
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